""" Core data processing and analysis logic for the PharmaCircle AI Data Analyst. This module orchestrates the main analysis workflow: 1. Takes a user's natural language query. 2. Uses the LLM to generate a structured analysis plan. 3. Executes parallel queries against Solr for quantitative and qualitative data. 4. Generates a data visualization using the LLM. 5. Synthesizes the findings into a comprehensive, user-facing report. """ import json import re import datetime import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import concurrent.futures import copy import google.generativeai as genai import urllib import pysolr import config # Import the config module to access remote host details import tiktoken from llm_prompts import ( get_analysis_plan_prompt, get_synthesis_report_prompt, get_visualization_code_prompt ) from extract_results import get_search_list_params def parse_suggestions_from_report(report_text): """Extracts numbered suggestions from the report's markdown text.""" suggestions_match = re.search(r"### (?:Deeper Dive: Suggested Follow-up Analyses|Suggestions for Further Exploration)\s*\n(.*?)$", report_text, re.DOTALL | re.IGNORECASE) if not suggestions_match: return [] suggestions_text = suggestions_match.group(1) suggestions = re.findall(r"^\s*\d+\.\s*(.*)", suggestions_text, re.MULTILINE) return [s.strip() for s in suggestions] def llm_generate_analysis_plan_with_history(llm_model, natural_language_query, chat_history): """ Generates a complete analysis plan from a user query, considering chat history and dynamic field suggestions from an external API. """ search_fields, search_name, field_mappings = [], "", {} intent = None try: intent, search_fields, search_name, field_mappings = get_search_list_params(natural_language_query) print(f"API returned intent: '{intent}', core: '{search_name}' with {len(search_fields)} fields and {len(field_mappings)} mappings.") if intent != 'search_list': print(f"API returned intent '{intent}' which is not 'search_list'. Aborting analysis.") return None, None, None, intent, None, None, None except Exception as e: print(f"Warning: Could not retrieve dynamic search fields. Proceeding without them. Error: {e}") return None, [], None, 'api_error', None, None, None core_name = search_name if search_name else 'news' mapped_search_fields = [] if search_fields and field_mappings: for field in search_fields: original_name = field.get('field_name') mapped_field = field.copy() if original_name in field_mappings: mapped_field['field_name'] = field_mappings[original_name] print(f"Mapped field '{original_name}' to '{mapped_field['field_name']}'") mapped_search_fields.append(mapped_field) else: mapped_search_fields = search_fields prompt = get_analysis_plan_prompt(natural_language_query, chat_history, mapped_search_fields, core_name) try: response = llm_model.generate_content(prompt) encoding = tiktoken.encoding_for_model("gpt-4") input_token_count = len(encoding.encode(prompt)) output_token_count = len(encoding.encode(response.text)) total_token_count = (input_token_count if input_token_count is not None else 0) + (output_token_count if output_token_count is not None else 0) cleaned_text = re.sub(r'```json\s*|\s*```', '', response.text, flags=re.MULTILINE | re.DOTALL).strip() plan = json.loads(cleaned_text) return plan, mapped_search_fields, core_name, intent, input_token_count, output_token_count, total_token_count except json.JSONDecodeError as e: raw_response_text = response.text if 'response' in locals() else 'N/A' print(f"Error decoding JSON from LLM response: {e}\nRaw Response:\n{raw_response_text}") return None, mapped_search_fields, core_name, intent, None, None, None except Exception as e: raw_response_text = response.text if 'response' in locals() else 'N/A' print(f"Error in llm_generate_analysis_plan_with_history: {e}\nRaw Response:\n{raw_response_text}") return None, mapped_search_fields, core_name, intent, None, None, None def execute_quantitative_query(solr_client, plan): """Executes the facet query to get aggregate data.""" if not plan or 'quantitative_request' not in plan or 'json.facet' not in plan.get('quantitative_request', {}): print("Skipping quantitative query due to incomplete plan.") return None, None try: params = { "q": plan.get('query_filter', '*_*'), "rows": 0, "json.facet": json.dumps(plan['quantitative_request']['json.facet']) } base_url = f"{solr_client.url}/select" query_string = urllib.parse.urlencode(params) full_url = f"{base_url}?{query_string}" # Create the public-facing URL for display public_url = full_url.replace(f'http://127.0.0.1:{config.LOCAL_BIND_PORT}', f'http://{config.REMOTE_SOLR_HOST}:{config.REMOTE_SOLR_PORT}') print(f"[DEBUG] Solr QUANTITATIVE query URL (PUBLIC): {public_url}") results = solr_client.search(**params) return results.raw_response.get("facets", {}), public_url except pysolr.SolrError as e: print(f"Solr Error in quantitative query on core {solr_client.url}: {e}") return None, None except Exception as e: print(f"Unexpected error in quantitative query: {e}") return None, None def execute_qualitative_query(solr_client, plan): """Executes the grouping query to get the best example docs.""" if not plan or 'qualitative_request' not in plan: print("Skipping qualitative query due to incomplete plan.") return None, None try: qual_request = copy.deepcopy(plan['qualitative_request']) params = { "q": plan.get('query_filter', '*_*'), "rows": 5, "fl": "*,score", **qual_request } base_url = f"{solr_client.url}/select" query_string = urllib.parse.urlencode(params) full_url = f"{base_url}?{query_string}" # Create the public-facing URL for display public_url = full_url.replace(f'http://127.0.0.1:{config.LOCAL_BIND_PORT}', f'http://{config.REMOTE_SOLR_HOST}:{config.REMOTE_SOLR_PORT}') print(f"[DEBUG] Solr QUALITATIVE query URL (PUBLIC): {public_url}") results = solr_client.search(**params) return results.grouped, public_url except pysolr.SolrError as e: print(f"Solr Error in qualitative query on core {solr_client.url}: {e}") return None, None except Exception as e: print(f"Unexpected error in qualitative query: {e}") return None, None def llm_synthesize_enriched_report_stream(llm_model, query, quantitative_data, qualitative_data, plan): """ Generates an enriched report by synthesizing quantitative aggregates and qualitative examples, and streams the result. """ prompt = get_synthesis_report_prompt(query, quantitative_data, qualitative_data, plan) try: response_stream = llm_model.generate_content(prompt, stream=True) response_text = "" for chunk in response_stream: yield {"text": chunk.text, "tokens": None} response_text += chunk.text encoding = tiktoken.encoding_for_model("gpt-4") input_token_count = len(encoding.encode(prompt)) output_token_count = len(encoding.encode(response_text)) total_token_count = (input_token_count if input_token_count is not None else 0) + (output_token_count if output_token_count is not None else 0) tokens = { "input": input_token_count, "output": output_token_count, "total": total_token_count, } yield {"text": None, "tokens": tokens} except Exception as e: print(f"Error in llm_synthesize_enriched_report_stream: {e}") yield {"text": "Sorry, an error occurred while generating the report. Please check the logs for details.", "tokens": None} def llm_generate_visualization_code(llm_model, query_context, facet_data): """Generates Python code for visualization based on query and data.""" prompt = get_visualization_code_prompt(query_context, facet_data) try: generation_config = genai.types.GenerationConfig(temperature=0) response = llm_model.generate_content(prompt, generation_config=generation_config) encoding = tiktoken.encoding_for_model("gpt-4") input_token_count = len(encoding.encode(prompt)) output_token_count = len(encoding.encode(response.text)) total_token_count = (input_token_count if input_token_count is not None else 0) + (output_token_count if output_token_count is not None else 0) code = re.sub(r'^```python\s*|```$', '', response.text, flags=re.MULTILINE) return code, input_token_count, output_token_count, total_token_count except Exception as e: raw_response_text = response.text if 'response' in locals() else 'N/A' print(f"Error in llm_generate_visualization_code: {e}\nRaw response: {raw_response_text}") return def execute_viz_code_and_get_path(viz_code, facet_data): """Executes visualization code and returns the path to the saved plot image.""" if not viz_code: return None # --- SECURITY WARNING --- # The following code executes code generated by an LLM. This is a security # risk and should be handled with extreme care in a production environment. # Ideally, this code should be run in a sandboxed environment. print("\n--- WARNING: Executing LLM-generated code. ---") try: if not os.path.exists('/tmp/plots'): os.makedirs('/tmp/plots') plot_path = f"/tmp/plots/plot_{datetime.datetime.now().timestamp()}.png" # Create a restricted global environment for execution exec_globals = {'facet_data': facet_data, 'plt': plt, 'sns': sns, 'pd': pd} exec(viz_code, exec_globals) fig = exec_globals.get('fig') if fig: fig.savefig(plot_path, bbox_inches='tight') plt.close(fig) print("--- LLM-generated code executed successfully. ---") return plot_path else: print("--- LLM-generated code did not produce a 'fig' object. ---") return None except Exception as e: print(f"\n--- ERROR executing visualization code: ---") print(f"Error: {e}") print(f"--- Code---\n{viz_code}") print("-----------------------------------------") return None