File size: 9,663 Bytes
f564c07
 
 
 
 
c2c8678
fc25810
f564c07
 
 
 
 
 
 
 
 
 
 
d84f242
f564c07
 
c2c8678
f564c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc25810
f564c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d84f242
 
 
 
 
 
f564c07
c02898e
fc25810
 
 
 
 
 
021b1ab
 
fc25810
 
 
 
d84f242
f564c07
 
 
fc25810
 
 
 
 
 
 
 
 
 
 
 
 
c2c8678
fc25810
 
c2c8678
fc25810
 
 
 
 
 
 
 
 
 
 
 
 
 
f564c07
 
 
 
 
 
 
 
 
 
 
fc25810
f564c07
 
 
 
 
 
 
 
 
fc25810
f564c07
 
 
 
 
 
 
 
 
 
 
 
fc25810
 
f564c07
 
 
 
 
 
 
 
 
 
 
d9f225e
 
 
 
 
f564c07
d9f225e
f564c07
 
d9f225e
 
 
 
f564c07
 
 
fc25810
f564c07
 
 
 
 
 
 
fc25810
f564c07
 
 
d9f225e
 
 
 
 
 
 
 
 
 
 
 
 
 
f564c07
a73c754
 
1020d6b
a73c754
 
1020d6b
f564c07
 
 
 
 
 
 
 
 
 
 
d9f225e
 
f564c07
 
a73c754
f564c07
 
 
d84f242
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import xml.etree.ElementTree as ET
import gradio as gr
import PIL.Image as Image
import numpy as np
import cv2
from ultralytics import ASSETS, YOLOv10
from exiftool import ExifToolHelper
from geopy.distance import geodesic
import folium
import base64
import supervision as sv
import os

# Constants for image dimensions
IMAGE_WIDTH = 4000
IMAGE_HEIGHT = 3000

# Load YOLO model
model = YOLOv10("weights/yolov10m-e100-b16-full-best.pt")

# Define the directory for saving uploaded images
UPLOAD_DIR = 'uploads'  # Or any other directory within your project
os.makedirs(UPLOAD_DIR, exist_ok=True)


# Function to calculate ground distance from pixel distance
def calculate_ground_distance(altitude, fov_deg, image_dimension, pixel_distance):
    fov_rad = np.radians(fov_deg)
    ground_distance = (2 * altitude * np.tan(fov_rad / 2)) * (pixel_distance / image_dimension)
    return ground_distance

# Function to get GPS coordinates from offsets
def get_gps_coordinates(lat, lon, north_offset, east_offset):
    new_location = geodesic(meters=north_offset).destination((lat, lon), 0)
    new_location = geodesic(meters=east_offset).destination(new_location, 90)
    return new_location.latitude, new_location.longitude

def extract_xmp_metadata(xmp_data):
    # Parse the XMP data as an XML tree
    root = ET.fromstring(xmp_data)

    # Define the namespace to use for querying elements
    ns = {
        'rdf': 'http://www.w3.org/1999/02/22-rdf-syntax-ns#',
        'drone-dji': 'http://www.dji.com/drone-dji/1.0/'
    }

    # Find the rdf:Description element
    rdf_description = root.find('.//rdf:Description', ns)

    # Extract the desired values
    relative_altitude = float(rdf_description.get('{http://www.dji.com/drone-dji/1.0/}RelativeAltitude', '0'))
    gimbal_yaw_degree = float(rdf_description.get('{http://www.dji.com/drone-dji/1.0/}GimbalYawDegree', '0'))
    gimbal_pitch_degree = float(rdf_description.get('{http://www.dji.com/drone-dji/1.0/}GimbalPitchDegree', '0'))

    return relative_altitude, gimbal_yaw_degree, gimbal_pitch_degree

def save_image_with_metadata(img, img_path):
    # Convert PIL Image to a format that retains EXIF
    img_format = img.format or 'JPEG'
    
    # Save image to a temporary file to preserve metadata
    img.save(img_path, format=img_format)


def predict_image(img, conf_threshold, iou_threshold):
    # Define the file path within the uploads directory
    img_path = os.path.join(UPLOAD_DIR, 'uploaded_image.jpg')

    # Save the image
    save_image_with_metadata(img, img_path)

    # Extract XMP data
    xmp_data = img.info.get("xmp")

    if xmp_data:
        relative_altitude, gimbal_yaw_degree, gimbal_pitch_degree = extract_xmp_metadata(xmp_data)
        # for debugging 
        print("Extracted XMP Metadata:")
        print(f"Relative Altitude: {relative_altitude}")
        print(f"Gimbal Yaw Degree: {gimbal_yaw_degree}")
        print(f"Gimbal Pitch Degree: {gimbal_pitch_degree}")
    else:
        print("XMP data not found in the image.")
        # Set default values when XMP data is not found
        relative_altitude = 60.0  # Default relative altitude
        gimbal_yaw_degree = 30.0  # Default yaw degree
        gimbal_pitch_degree = -90.0  # Default pitch degree

    # Continue with the rest of the function...
    # Extract EXIF data
    exif_data = img.info.get("exif")
    try:
        xmp_data = img.info.get("xmp")
        #print(xmp_data)    
    except:
        print("error loading xmp data")    
    #print(exif_data)

    # Save the image with metadata
    if exif_data:
        img.save(img_path, exif=exif_data)  # Save the image with its EXIF data
    else:
        img.save(img_path)  # Save without EXIF data if not available

    # Convert PIL Image to OpenCV image
    img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

    # Use ExifTool to extract metadata
    metadata = {}
    tag_list = [
        "Composite:FOV",
        "Composite:GPSLatitude",
        "Composite:GPSLongitude",
        "XMP:AbsoluteAltitude",
        "XMP:RelativeAltitude",
        "XMP:GimbalRollDegree",
        "XMP:GimbalYawDegree",
        "XMP:GimbalPitchDegree"
    ]

    #rel_path = img_path.lstrip("./")
    #print(rel_path)
    with ExifToolHelper() as et:
        for d in et.get_metadata(img_path):
            metadata.update({k: v for k, v in d.items() if k in tag_list})

    # Extract necessary metadata
    CAMERA_GPS = (metadata["Composite:GPSLatitude"], metadata["Composite:GPSLongitude"])
    RELATIVE_ALTITUDE = float(relative_altitude)
    GIMBAL_YAW_DEGREE = float(gimbal_yaw_degree)
    FOV_HORIZONTAL = float(metadata["Composite:FOV"])
    FOV_VERTICAL = FOV_HORIZONTAL * (IMAGE_HEIGHT / IMAGE_WIDTH)
    #GIMBAL_PITCH_DEGREE = float(gimbal_pitch_degree)
    
    # Convert degrees to radians
    yaw_rad = np.radians(GIMBAL_YAW_DEGREE)
    #pitch_rad = np.radians(GIMBAL_PITCH_DEGREE)

    # Perform prediction
    results = model.predict(
        source=img_cv2,
        conf=conf_threshold,
        iou=iou_threshold,
        show_labels=True,
        show_conf=True,
        imgsz=640,
    )

    detections = sv.Detections.from_ultralytics(results[0])
    
    # Annotate and display image
    for r in results:
        im_array = r.plot()
        im = Image.fromarray(im_array[..., ::-1])

    # Process detections and calculate GPS coordinates
    building_locations = []
    for i, box in enumerate(detections.xyxy):  # Correct way to iterate through boxes
        # Extract bounding box coordinates and class
        #print(box)
        x_min, y_min, x_max, y_max = box  # Access the first (and only) box
        class_id = int(detections.class_id[i])  # Get class ID as an integer

        x_center = (x_min + x_max) / 2
        y_center = (y_min + y_max) / 2

        pixel_distance_x = x_center - IMAGE_WIDTH / 2
        pixel_distance_y = IMAGE_HEIGHT / 2 - y_center

        ground_distance_x = calculate_ground_distance(RELATIVE_ALTITUDE, FOV_HORIZONTAL, IMAGE_WIDTH, pixel_distance_x)
        ground_distance_y = calculate_ground_distance(RELATIVE_ALTITUDE, FOV_VERTICAL, IMAGE_HEIGHT, pixel_distance_y)

        east_offset = ground_distance_x * np.cos(yaw_rad) - ground_distance_y * np.sin(yaw_rad)
        north_offset = ground_distance_x * np.sin(yaw_rad) + ground_distance_y * np.cos(yaw_rad)

        building_lat, building_lon = get_gps_coordinates(CAMERA_GPS[0], CAMERA_GPS[1], north_offset, east_offset)
        building_locations.append((building_lat, building_lon, class_id))

    # Create a Folium map centered at the camera's GPS position
    map_center = CAMERA_GPS
    m = folium.Map(
        location=map_center,
        zoom_start=18,
        tiles='Esri.WorldImagery'
    )
    

    # Initialize counters for damaged and undamaged buildings
    damaged_count = 0
    undamaged_count = 0

    # Add markers for each detected building and count the damaged and undamaged buildings
    for i, (building_lat, building_lon, class_id) in enumerate(building_locations):
        building_status = 'Damaged' if class_id == 1 else 'Undamaged'
        if class_id == 1:
            damaged_count += 1
        else:
            undamaged_count += 1

        folium.Marker(
            location=(building_lat, building_lon),
            popup=f'Building {i+1}: {building_status}',
            icon=folium.Icon(color='red' if class_id == 1 else 'green', icon='home')
        ).add_to(m)

    # Save map to HTML and convert to display in Gradio
    m.save('temp_map.html')
    with open('temp_map.html', 'r') as f:
        folium_map_html = f.read()
    
    encoded_html = base64.b64encode(folium_map_html.encode()).decode('utf-8')
    data_url = f"data:text/html;base64,{encoded_html}"

    # Create a summary of the building counts
    summary = f"Damaged Buildings: {damaged_count}, Undamaged Buildings: {undamaged_count}"

    # Create an HTML table for building information
    table_html = "<table style='width: 100%; border-collapse: collapse;'>"
    table_html += "<tr><th style='border: 1px solid black;'>Building Number</th><th style='border: 1px solid black;'>Building Type</th><th style='border: 1px solid black;'>Location (Lat, Lon)</th></tr>"

    for i, (lat, lon, class_id) in enumerate(building_locations):
        building_type = 'Damaged' if class_id == 1 else 'Undamaged'
        table_html += f"<tr><td style='border: 1px solid black;'>{i+1}</td><td style='border: 1px solid black;'>{building_type}</td><td style='border: 1px solid black;'>{lat}, {lon}</td></tr>"

    table_html += "</table>"

    return im, f'<iframe src="{data_url}" width="100%" height="600" style="border:none;"></iframe>', summary, table_html

description_with_logo = """
<p>Upload images for inference and view detected building locations on the map.</p>
<p>For test images, visit <a href="https://drive.google.com/drive/folders/15_WULrRqvPDuhWqC8hmA6LhBtH98X0dV?usp=drive_link" target="_blank">this Google Drive folder</a>.</p>
"""


# Gradio Interface
iface = gr.Interface(
    fn=predict_image,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
        gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
    ],
    outputs=[
        gr.Image(type="pil", label="Annotated Image"),
        gr.HTML(label="Map"),
        gr.HTML(label="Summary"),  # New output for the summary
        gr.HTML(label="Building Information"),  # New output for the table
    ],
    title="Custom trained Yolov10 Model on Rescuenet Dataset",
    description=description_with_logo,
)

if __name__ == "__main__":
    iface.launch()