File size: 9,663 Bytes
f564c07 c2c8678 fc25810 f564c07 d84f242 f564c07 c2c8678 f564c07 fc25810 f564c07 d84f242 f564c07 c02898e fc25810 021b1ab fc25810 d84f242 f564c07 fc25810 c2c8678 fc25810 c2c8678 fc25810 f564c07 fc25810 f564c07 fc25810 f564c07 fc25810 f564c07 d9f225e f564c07 d9f225e f564c07 d9f225e f564c07 fc25810 f564c07 fc25810 f564c07 d9f225e f564c07 a73c754 1020d6b a73c754 1020d6b f564c07 d9f225e f564c07 a73c754 f564c07 d84f242 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import xml.etree.ElementTree as ET
import gradio as gr
import PIL.Image as Image
import numpy as np
import cv2
from ultralytics import ASSETS, YOLOv10
from exiftool import ExifToolHelper
from geopy.distance import geodesic
import folium
import base64
import supervision as sv
import os
# Constants for image dimensions
IMAGE_WIDTH = 4000
IMAGE_HEIGHT = 3000
# Load YOLO model
model = YOLOv10("weights/yolov10m-e100-b16-full-best.pt")
# Define the directory for saving uploaded images
UPLOAD_DIR = 'uploads' # Or any other directory within your project
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Function to calculate ground distance from pixel distance
def calculate_ground_distance(altitude, fov_deg, image_dimension, pixel_distance):
fov_rad = np.radians(fov_deg)
ground_distance = (2 * altitude * np.tan(fov_rad / 2)) * (pixel_distance / image_dimension)
return ground_distance
# Function to get GPS coordinates from offsets
def get_gps_coordinates(lat, lon, north_offset, east_offset):
new_location = geodesic(meters=north_offset).destination((lat, lon), 0)
new_location = geodesic(meters=east_offset).destination(new_location, 90)
return new_location.latitude, new_location.longitude
def extract_xmp_metadata(xmp_data):
# Parse the XMP data as an XML tree
root = ET.fromstring(xmp_data)
# Define the namespace to use for querying elements
ns = {
'rdf': 'http://www.w3.org/1999/02/22-rdf-syntax-ns#',
'drone-dji': 'http://www.dji.com/drone-dji/1.0/'
}
# Find the rdf:Description element
rdf_description = root.find('.//rdf:Description', ns)
# Extract the desired values
relative_altitude = float(rdf_description.get('{http://www.dji.com/drone-dji/1.0/}RelativeAltitude', '0'))
gimbal_yaw_degree = float(rdf_description.get('{http://www.dji.com/drone-dji/1.0/}GimbalYawDegree', '0'))
gimbal_pitch_degree = float(rdf_description.get('{http://www.dji.com/drone-dji/1.0/}GimbalPitchDegree', '0'))
return relative_altitude, gimbal_yaw_degree, gimbal_pitch_degree
def save_image_with_metadata(img, img_path):
# Convert PIL Image to a format that retains EXIF
img_format = img.format or 'JPEG'
# Save image to a temporary file to preserve metadata
img.save(img_path, format=img_format)
def predict_image(img, conf_threshold, iou_threshold):
# Define the file path within the uploads directory
img_path = os.path.join(UPLOAD_DIR, 'uploaded_image.jpg')
# Save the image
save_image_with_metadata(img, img_path)
# Extract XMP data
xmp_data = img.info.get("xmp")
if xmp_data:
relative_altitude, gimbal_yaw_degree, gimbal_pitch_degree = extract_xmp_metadata(xmp_data)
# for debugging
print("Extracted XMP Metadata:")
print(f"Relative Altitude: {relative_altitude}")
print(f"Gimbal Yaw Degree: {gimbal_yaw_degree}")
print(f"Gimbal Pitch Degree: {gimbal_pitch_degree}")
else:
print("XMP data not found in the image.")
# Set default values when XMP data is not found
relative_altitude = 60.0 # Default relative altitude
gimbal_yaw_degree = 30.0 # Default yaw degree
gimbal_pitch_degree = -90.0 # Default pitch degree
# Continue with the rest of the function...
# Extract EXIF data
exif_data = img.info.get("exif")
try:
xmp_data = img.info.get("xmp")
#print(xmp_data)
except:
print("error loading xmp data")
#print(exif_data)
# Save the image with metadata
if exif_data:
img.save(img_path, exif=exif_data) # Save the image with its EXIF data
else:
img.save(img_path) # Save without EXIF data if not available
# Convert PIL Image to OpenCV image
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Use ExifTool to extract metadata
metadata = {}
tag_list = [
"Composite:FOV",
"Composite:GPSLatitude",
"Composite:GPSLongitude",
"XMP:AbsoluteAltitude",
"XMP:RelativeAltitude",
"XMP:GimbalRollDegree",
"XMP:GimbalYawDegree",
"XMP:GimbalPitchDegree"
]
#rel_path = img_path.lstrip("./")
#print(rel_path)
with ExifToolHelper() as et:
for d in et.get_metadata(img_path):
metadata.update({k: v for k, v in d.items() if k in tag_list})
# Extract necessary metadata
CAMERA_GPS = (metadata["Composite:GPSLatitude"], metadata["Composite:GPSLongitude"])
RELATIVE_ALTITUDE = float(relative_altitude)
GIMBAL_YAW_DEGREE = float(gimbal_yaw_degree)
FOV_HORIZONTAL = float(metadata["Composite:FOV"])
FOV_VERTICAL = FOV_HORIZONTAL * (IMAGE_HEIGHT / IMAGE_WIDTH)
#GIMBAL_PITCH_DEGREE = float(gimbal_pitch_degree)
# Convert degrees to radians
yaw_rad = np.radians(GIMBAL_YAW_DEGREE)
#pitch_rad = np.radians(GIMBAL_PITCH_DEGREE)
# Perform prediction
results = model.predict(
source=img_cv2,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
detections = sv.Detections.from_ultralytics(results[0])
# Annotate and display image
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
# Process detections and calculate GPS coordinates
building_locations = []
for i, box in enumerate(detections.xyxy): # Correct way to iterate through boxes
# Extract bounding box coordinates and class
#print(box)
x_min, y_min, x_max, y_max = box # Access the first (and only) box
class_id = int(detections.class_id[i]) # Get class ID as an integer
x_center = (x_min + x_max) / 2
y_center = (y_min + y_max) / 2
pixel_distance_x = x_center - IMAGE_WIDTH / 2
pixel_distance_y = IMAGE_HEIGHT / 2 - y_center
ground_distance_x = calculate_ground_distance(RELATIVE_ALTITUDE, FOV_HORIZONTAL, IMAGE_WIDTH, pixel_distance_x)
ground_distance_y = calculate_ground_distance(RELATIVE_ALTITUDE, FOV_VERTICAL, IMAGE_HEIGHT, pixel_distance_y)
east_offset = ground_distance_x * np.cos(yaw_rad) - ground_distance_y * np.sin(yaw_rad)
north_offset = ground_distance_x * np.sin(yaw_rad) + ground_distance_y * np.cos(yaw_rad)
building_lat, building_lon = get_gps_coordinates(CAMERA_GPS[0], CAMERA_GPS[1], north_offset, east_offset)
building_locations.append((building_lat, building_lon, class_id))
# Create a Folium map centered at the camera's GPS position
map_center = CAMERA_GPS
m = folium.Map(
location=map_center,
zoom_start=18,
tiles='Esri.WorldImagery'
)
# Initialize counters for damaged and undamaged buildings
damaged_count = 0
undamaged_count = 0
# Add markers for each detected building and count the damaged and undamaged buildings
for i, (building_lat, building_lon, class_id) in enumerate(building_locations):
building_status = 'Damaged' if class_id == 1 else 'Undamaged'
if class_id == 1:
damaged_count += 1
else:
undamaged_count += 1
folium.Marker(
location=(building_lat, building_lon),
popup=f'Building {i+1}: {building_status}',
icon=folium.Icon(color='red' if class_id == 1 else 'green', icon='home')
).add_to(m)
# Save map to HTML and convert to display in Gradio
m.save('temp_map.html')
with open('temp_map.html', 'r') as f:
folium_map_html = f.read()
encoded_html = base64.b64encode(folium_map_html.encode()).decode('utf-8')
data_url = f"data:text/html;base64,{encoded_html}"
# Create a summary of the building counts
summary = f"Damaged Buildings: {damaged_count}, Undamaged Buildings: {undamaged_count}"
# Create an HTML table for building information
table_html = "<table style='width: 100%; border-collapse: collapse;'>"
table_html += "<tr><th style='border: 1px solid black;'>Building Number</th><th style='border: 1px solid black;'>Building Type</th><th style='border: 1px solid black;'>Location (Lat, Lon)</th></tr>"
for i, (lat, lon, class_id) in enumerate(building_locations):
building_type = 'Damaged' if class_id == 1 else 'Undamaged'
table_html += f"<tr><td style='border: 1px solid black;'>{i+1}</td><td style='border: 1px solid black;'>{building_type}</td><td style='border: 1px solid black;'>{lat}, {lon}</td></tr>"
table_html += "</table>"
return im, f'<iframe src="{data_url}" width="100%" height="600" style="border:none;"></iframe>', summary, table_html
description_with_logo = """
<p>Upload images for inference and view detected building locations on the map.</p>
<p>For test images, visit <a href="https://drive.google.com/drive/folders/15_WULrRqvPDuhWqC8hmA6LhBtH98X0dV?usp=drive_link" target="_blank">this Google Drive folder</a>.</p>
"""
# Gradio Interface
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
],
outputs=[
gr.Image(type="pil", label="Annotated Image"),
gr.HTML(label="Map"),
gr.HTML(label="Summary"), # New output for the summary
gr.HTML(label="Building Information"), # New output for the table
],
title="Custom trained Yolov10 Model on Rescuenet Dataset",
description=description_with_logo,
)
if __name__ == "__main__":
iface.launch()
|