""" Streamlit app for human evaluation of model outputs. Allows users to select two models, compare their responses to the same inputs, and record preferences for subsequent analysis. """ import os import json import csv from datetime import datetime import streamlit as st import pandas as pd import tempfile st.set_page_config(page_title="Model Comparison Evaluation", layout="wide") SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.join(SCRIPT_DIR, "for_experiments_prediction") @st.cache_data def load_models(data_dir): """ Discover prediction JSON files named 'predicted_vs_gt.json' and load flattened records for each model. Returns a dict mapping model name to dict of {id: record}. """ model_paths = {} for root, _, files in os.walk(data_dir): for fname in files: if fname == 'predicted_vs_gt.json': path = os.path.join(root, fname) rel = os.path.relpath(root, data_dir) model_paths[rel] = path models = {} for model_name, path in sorted(model_paths.items()): with open(path, 'r', encoding='utf-8') as f: data = json.load(f) records = {} for section in data.values(): if isinstance(section, dict): for sub in section.values(): for rec in sub: records[rec['id']] = rec elif isinstance(section, list): for rec in section: records[rec['id']] = rec models[model_name] = records return models def append_feedback(feedback_file, header, row): """ Append a single feedback row to TSV, writing header if file does not exist. """ write_header = not os.path.exists(feedback_file) with open(feedback_file, 'a', newline='', encoding='utf-8') as f: writer = csv.writer(f, delimiter='\t', quoting=csv.QUOTE_ALL) if write_header: writer.writerow(header) writer.writerow(row) @st.cache_data def load_eval_tables(data_dir): """ Discover evaluation_table.parquet files under each model directory and load each into a pandas DataFrame. Returns a dict mapping model name to its evaluation DataFrame. """ tables = {} for root, _, files in os.walk(data_dir): if 'evaluation_table.parquet' in files: path = os.path.join(root, 'evaluation_table.parquet') rel = os.path.relpath(root, data_dir) tables[rel] = pd.read_parquet(path) return tables def main(): st.title("Model Comparison Evaluation") print(DATA_DIR) models = load_models(DATA_DIR) eval_tables = load_eval_tables(DATA_DIR) all_cols = set() for df in eval_tables.values(): all_cols.update(df.columns) key_columns = {'gt_sac_id', 'gt_title'} metric_columns = sorted(all_cols - key_columns) fixed_metrics = [ 'chemicals_accuracy', 'chemicals_f1_score', 'chemicals_precision', 'chemicals_recall', 'metal_accuracy', 'metal_f1_score', 'metal_precision', 'metal_recall', 'procedure_procedure_completeness_score', 'procedure_procedure_order_score', 'procedure_procedure_accuracy_score', 'support_accuracy', 'support_f1_score', 'support_precision', 'support_recall', ] other_metrics = sorted([c for c in metric_columns if c not in fixed_metrics and not c.startswith('gt_')]) model_names = list(models.keys()) st.sidebar.header("Configuration") def reset_index(): st.session_state.idx = 0 # Reset feedback file when models change feedback_path = os.path.join(tempfile.gettempdir(), 'feedback.tsv') if os.path.exists(feedback_path): os.remove(feedback_path) selected = st.sidebar.multiselect( "Select exactly two models to compare", options=model_names, key='models', help="Choose two model variants for side-by-side comparison", on_change=reset_index ) if len(selected) != 2: st.sidebar.info("Please select exactly two models.") st.stop() # Download button for feedback TSV feedback_path = os.path.join(tempfile.gettempdir(), 'feedback.tsv') if os.path.exists(feedback_path): with open(feedback_path, 'r', encoding='utf-8') as f: tsv_data = f.read() st.sidebar.download_button( label="Download Feedback TSV", data=tsv_data, file_name="feedback.tsv", mime="text/tab-separated-values" ) m1, m2 = selected recs1 = models[m1] recs2 = models[m2] common_ids = sorted(set(recs1.keys()) & set(recs2.keys())) if not common_ids: st.error("No common records between the selected models.") st.stop() if 'idx' not in st.session_state: st.session_state.idx = 0 if 'feedback_saved' not in st.session_state: st.session_state.feedback_saved = False # Initialize fresh feedback file for new session if 'session_initialized' not in st.session_state: feedback_path = os.path.join(tempfile.gettempdir(), 'feedback.tsv') if os.path.exists(feedback_path): os.remove(feedback_path) st.session_state.session_initialized = True total = len(common_ids) idx = st.session_state.idx if idx < 0: idx = 0 if idx >= total: st.write("### Evaluation complete! Thank you for your feedback.") st.stop() current_id = common_ids[idx] rec1 = recs1[current_id] rec2 = recs2[current_id] st.markdown(f"**Record {idx+1}/{total} — ID: {current_id}**") st.markdown("---") st.subheader("Input Prompt") st.code(rec1.get('input', ''), language='') st.subheader("Model Responses and Ground Truth") col1, col2, col3 = st.columns(3) with col1: st.markdown(f"**{m1}**") st.text_area("", rec1.get('predicted', ''), height=600, key=f"resp1_{idx}") with col2: st.markdown(f"**{m2}**") st.text_area("", rec2.get('predicted', ''), height=600, key=f"resp2_{idx}") with col3: st.markdown("**Ground Truth**") st.text_area("", rec1.get('ground_truth', ''), height=600, key=f"gt_{idx}") fcol1, fcol2, fcol3 = st.columns(3) with fcol1: df1 = eval_tables.get(m1) if df1 is not None: if 'gt_sac_id' in df1.columns: key_val = rec1.get('gt_sac_id', rec1.get('sac_id')) key_col = 'gt_sac_id' elif 'gt_title' in df1.columns: key_val = rec1.get('gt_title', rec1.get('title')) key_col = 'gt_title' else: key_col = key_val = None if key_col and key_val is not None: row = df1[df1[key_col] == key_val] if not row.empty: fm_df = row[fixed_metrics].T fm_df.columns = ['value'] st.table(fm_df) else: st.info("No fixed metrics for this record.") else: st.info("No evaluation table available for this model.") with fcol2: df2 = eval_tables.get(m2) if df2 is not None: if 'gt_sac_id' in df2.columns: key_val = rec1.get('gt_sac_id', rec1.get('sac_id')) key_col = 'gt_sac_id' elif 'gt_title' in df2.columns: key_val = rec1.get('gt_title', rec1.get('title')) key_col = 'gt_title' else: key_col = key_val = None if key_col and key_val is not None: row = df2[df2[key_col] == key_val] if not row.empty: fm_df = row[fixed_metrics].T.astype(float).mean(axis=1) fm_df.columns = ['value'] st.table(fm_df) else: st.info("No fixed metrics for this record.") else: st.info("No evaluation table available for this model.") if other_metrics: selected_metric = st.selectbox( "Select additional metric to display", options=other_metrics, key=f"metric_sel_{idx}" ) else: selected_metric = None if selected_metric: mcol1, mcol2, mcol3 = st.columns(3) with mcol1: df1 = eval_tables.get(m1) if df1 is not None and selected_metric in df1.columns: if 'gt_sac_id' in df1.columns: key_val = rec1.get('gt_sac_id', rec1.get('sac_id')) key_col = 'gt_sac_id' elif 'gt_title' in df1.columns: key_val = rec1.get('gt_title', rec1.get('title')) key_col = 'gt_title' else: key_col = key_val = None if key_col and key_val is not None: row = df1[df1[key_col] == key_val] if not row.empty: value = row[selected_metric].iloc[0] try: # Try to parse as JSON first parsed_json = json.loads(str(value)) formatted_json = json.dumps(parsed_json, indent=2) st.markdown(f"**{selected_metric}:**") st.code(formatted_json, language='json') except json.JSONDecodeError: try: # If JSON fails, try to evaluate as Python literal (handles single quotes) import ast parsed_json = ast.literal_eval(str(value)) formatted_json = json.dumps(parsed_json, indent=2) st.markdown(f"**{selected_metric}:**") st.code(formatted_json, language='json') except (ValueError, SyntaxError): # If all parsing fails, show as raw text st.markdown(f"**{selected_metric}:** {value}") except (TypeError, ValueError): st.markdown(f"**{selected_metric}:** {value}") else: st.markdown(f"**{selected_metric}:** N/A") else: st.markdown(f"**{selected_metric}:** N/A") with mcol2: df2 = eval_tables.get(m2) if df2 is not None and selected_metric in df2.columns: if 'gt_sac_id' in df2.columns: key_val = rec1.get('gt_sac_id', rec1.get('sac_id')) key_col = 'gt_sac_id' elif 'gt_title' in df2.columns: key_val = rec1.get('gt_title', rec1.get('title')) key_col = 'gt_title' else: key_col = key_val = None if key_col and key_val is not None: row = df2[df2[key_col] == key_val] if not row.empty: value = row[selected_metric].iloc[0] try: # Try to parse as JSON first parsed_json = json.loads(str(value)) formatted_json = json.dumps(parsed_json, indent=2) st.markdown(f"**{selected_metric}:**") st.code(formatted_json, language='json') except json.JSONDecodeError: try: # If JSON fails, try to evaluate as Python literal (handles single quotes) import ast parsed_json = ast.literal_eval(str(value)) formatted_json = json.dumps(parsed_json, indent=2) st.markdown(f"**{selected_metric}:**") st.code(formatted_json, language='json') except (ValueError, SyntaxError): # If all parsing fails, show as raw text st.markdown(f"**{selected_metric}:** {value}") except (TypeError, ValueError): st.markdown(f"**{selected_metric}:** {value}") else: st.markdown(f"**{selected_metric}:** N/A") else: st.markdown(f"**{selected_metric}:** N/A") with mcol3: st.markdown("**Ground Truth Metrics**") df_for_gt = eval_tables.get(m1) if df_for_gt is None: df_for_gt = eval_tables.get(m2) if df_for_gt is not None: if 'gt_sac_id' in df_for_gt.columns: key_val = rec1.get('gt_sac_id', rec1.get('sac_id')) key_col = 'gt_sac_id' elif 'gt_title' in df_for_gt.columns: key_val = rec1.get('gt_title', rec1.get('title')) key_col = 'gt_title' else: key_col = key_val = None if key_col and key_val is not None: row = df_for_gt[df_for_gt[key_col] == key_val] if not row.empty: excluded_gt_fields = {'gt_procedure', 'gt_dspy_uuid', 'gt_dspy_split'} gt_columns = [col for col in df_for_gt.columns if col.startswith('gt_') and col not in key_columns and col not in excluded_gt_fields] if gt_columns: for gt_col in gt_columns: value = row[gt_col].iloc[0] try: # Try to parse as JSON first parsed_json = json.loads(str(value)) formatted_json = json.dumps(parsed_json, indent=2) st.markdown(f"**{gt_col}:**") st.code(formatted_json, language='json') except json.JSONDecodeError: try: # If JSON fails, try to evaluate as Python literal (handles single quotes) import ast parsed_json = ast.literal_eval(str(value)) formatted_json = json.dumps(parsed_json, indent=2) st.markdown(f"**{gt_col}:**") st.code(formatted_json, language='json') except (ValueError, SyntaxError): # If all parsing fails, show as raw text st.markdown(f"**{gt_col}:** {value}") except (TypeError, ValueError): st.markdown(f"**{gt_col}:** {value}") else: st.info("No additional ground truth metrics available.") else: st.info("No ground truth metrics for this record.") else: st.info("No evaluation table available for ground truth metrics.") st.subheader("Your Preference") pref = st.radio( "Which response do you prefer?", options=[m1, m2], key=f"pref_{idx}" ) st.subheader("Comments (Optional)") comments = st.text_area( "Add any comments or notes about your preference:", height=100, key=f"comments_{idx}", placeholder="Optional: Explain your reasoning or add any observations..." ) if st.session_state.feedback_saved: st.success("Feedback saved.") st.session_state.feedback_saved = False header = [ 'timestamp', 'record_id', 'model_1', 'model_2', 'preference', 'input', 'response_1', 'response_2', 'ground_truth', 'comments' ] row = [ datetime.now().isoformat(), current_id, m1, m2, pref, rec1.get('input', ''), rec1.get('predicted', ''), rec2.get('predicted', ''), rec1.get('ground_truth', ''), comments ] def submit_feedback(): # Get the current text box content at the time of submission current_comments = st.session_state.get(f"comments_{idx}", "") # Update the row with the current comments row[9] = current_comments # comments is at index 9 append_feedback(feedback_path, header, row) st.session_state.idx += 1 st.session_state.feedback_saved = True st.button("Submit and Next", on_click=submit_feedback) if __name__ == '__main__': main()