File size: 24,321 Bytes
8c131f3
 
9558f10
 
0061e14
 
06f2a09
0061e14
4cca341
507ee5d
7d20cd0
e5e5305
 
ad81b69
 
e5e5305
9558f10
ad81b69
 
 
9558f10
 
ad81b69
 
c887522
0061e14
996830e
9aaf604
416ebf1
ed67886
416ebf1
570b23d
5048713
0061e14
ed67886
0061e14
ee85d80
3428d8c
b74992f
5048713
 
 
 
 
 
791ff8a
 
999b1fd
ed67886
b74992f
7d20cd0
0061e14
8c131f3
0061e14
 
7d20cd0
1f1ad34
999b1fd
1345efb
1f1ad34
1345efb
1f1ad34
999b1fd
02c84c1
1f1ad34
1345efb
1f1ad34
 
999b1fd
1f1ad34
 
999b1fd
1f1ad34
 
416ebf1
999b1fd
15b3ff2
 
999b1fd
 
7d20cd0
 
 
 
 
 
 
0dea883
7d20cd0
 
 
 
999b1fd
 
0061e14
 
7ded1c5
 
 
 
 
9203d52
7ded1c5
999b1fd
 
 
 
9203d52
7ded1c5
999b1fd
 
 
 
 
 
 
9203d52
999b1fd
fcdc7ac
999b1fd
 
9c7a699
 
999b1fd
 
4788cde
 
999b1fd
7ded1c5
999b1fd
570b23d
7ded1c5
999b1fd
 
 
 
 
7ded1c5
999b1fd
 
 
 
 
 
7ded1c5
 
999b1fd
7ded1c5
 
999b1fd
 
 
7ded1c5
 
 
999b1fd
 
7ded1c5
 
d59421c
999b1fd
7ded1c5
 
 
 
 
 
 
 
9203d52
999b1fd
 
 
 
5987558
999b1fd
9203d52
5987558
 
999b1fd
9203d52
5987558
999b1fd
51358a5
7722634
 
dd9f7ee
1bed249
 
 
 
 
 
 
 
d91b517
999b1fd
cc4e1bd
4d77847
 
 
985eb9a
 
 
4d77847
 
 
d7db717
 
06f2a09
 
 
 
 
 
 
 
985eb9a
06f2a09
 
 
985eb9a
d565019
 
06f2a09
d565019
e3776c3
06f2a09
985eb9a
d565019
 
 
 
85ce530
06f2a09
985eb9a
06f2a09
 
 
 
 
 
 
 
d7db717
 
b8cba9d
d7db717
06f2a09
 
 
b8cba9d
 
06f2a09
b8cba9d
06f2a09
 
 
 
 
2757719
b8cba9d
2757719
b8cba9d
06f2a09
 
 
 
 
 
 
d7db717
06f2a09
 
d7db717
 
 
06f2a09
4888ceb
 
 
 
 
 
 
06f2a09
 
b8cba9d
 
 
06f2a09
b8cba9d
06f2a09
 
 
d7db717
 
 
 
985eb9a
d7db717
4d77847
70a0e60
 
 
4f53150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
005b269
617b7c9
999b1fd
0061e14
06f2a09
1979939
 
68e0def
1979939
d15b3f0
4888ceb
 
 
2ba8849
 
e19fec8
42d6a20
 
2ba8849
 
 
4888ceb
 
 
 
 
 
 
 
d15b3f0
2ba8849
d15b3f0
4888ceb
d15b3f0
4888ceb
d15b3f0
06f2a09
d7db717
 
a6c6e58
985eb9a
d7db717
 
 
 
 
1b8f491
 
 
 
 
d7db717
 
 
 
 
 
 
06f2a09
 
 
 
b8cba9d
 
 
 
 
06f2a09
b8cba9d
06f2a09
 
 
d7db717
2ba8849
f797ce8
 
 
 
 
 
 
 
 
 
e5e5305
4d77847
 
ad81b69
 
 
 
 
97d33e1
4d77847
e30b579
4d77847
 
 
 
 
 
 
 
 
 
 
ea11ee1
d9b5156
4d77847
 
260568f
4d77847
 
 
ea11ee1
d9b5156
4d77847
 
 
260568f
4d77847
 
 
ea11ee1
d9b5156
4d77847
 
 
260568f
4d77847
 
 
985eb9a
 
4d77847
fdc7723
4d77847
 
 
 
ad81b69
 
e5e5305
 
967ec13
fdc7723
e5e5305
 
967ec13
 
 
78162be
 
967ec13
 
411f1aa
e5e5305
 
 
 
 
1fdd978
78162be
d20b3cd
2fce3fc
78162be
 
 
 
 
 
2959974
967ec13
985eb9a
e5e5305
8c131f3
e5e5305
d7db717
cfae876
 
49f9252
 
cfae876
 
 
9de43c0
999b1fd
1f1ad34
0061e14
d7db717
999b1fd
0061e14
999b1fd
 
 
 
e6b3c98
999b1fd
a988195
 
afb90fb
7ded1c5
70a0e60
 
999b1fd
dfdd006
7ded1c5
 
 
 
 
 
999b1fd
458cf5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49df7e
 
41d25c2
458cf5b
41d25c2
 
458cf5b
 
 
6c3c556
458cf5b
6c3c556
999b1fd
458cf5b
 
 
 
 
 
 
 
 
 
 
7ded1c5
 
999b1fd
 
 
 
 
7ded1c5
 
0061e14
 
999b1fd
daa3ab0
999b1fd
 
 
 
0061e14
791ff8a
51358a5
7722634
999b1fd
 
0061e14
 
1345efb
0061e14
999b1fd
791ff8a
f375538
999b1fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# app.py

import math

import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import Leaderboard, SelectColumns
from huggingface_hub import whoami

# HTML is split so we can inject Gradio media (images/video) where needed.
from src.about import WHAT_IS_F1_HTML_AFTER_VIDEO  # text immediately after the video
from src.about import WHAT_IS_F1_HTML_BOTTOM_A_AFTER_TABS  # text after the heading, before the first figure
from src.about import WHAT_IS_F1_HTML_BOTTOM_A_BEFORE_TABS  # up to (and including) the "Infinite Well" heading
from src.about import WHAT_IS_F1_HTML_EVAL_BEFORE_WARMUPFIG  # evaluation section up to before Warmup fig
from src.about import (  # tail after Tier1 fig; ⬅️ split to insert the tabs right after the heading
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    SUBMISSION_TERMS_TEXT,
    WHAT_IS_F1_HTML_AFTER_TIER1FIG_TAIL,
    WHAT_IS_F1_HTML_TOP,
)
from src.datamodel.data import F1Data
from src.display.css_html_js import custom_css
from src.display.formatting import styled_error
from src.display.utils import AutoEvalColumn, fields
from src.envs import API, CODE_PROBLEMS_REPO, REPO_ID, RESULTS_REPO, SUBMISSIONS_REPO
from src.logger import get_logger
from src.populate import get_leaderboard_df
from src.submission.submit import add_new_solutions, fetch_user_info
from src.validation.validate import MAX_INPUT_LENGTH, MIN_INPUT_LENGTH, is_submission_file_valid, is_valid

logger = get_logger(__name__)

ENSURE_ALL_PRESENT = True
SPLIT = "hard"  # warmup for debug

lbdb = F1Data(
    cp_ds_name=CODE_PROBLEMS_REPO,
    sub_ds_name=SUBMISSIONS_REPO,
    res_ds_name=RESULTS_REPO,
    split=SPLIT,
)

leaderboard_df = None

logger.info("Initialized LBDB")


def restart_space():
    logger.info("Restarting space")
    API.restart_space(repo_id=REPO_ID)


def refresh_leaderboard_data():
    """Refresh the leaderboard data from the latest results"""
    global leaderboard_df
    try:
        logger.info("Loading leaderboard data...")
        new_leaderboard_df = get_leaderboard_df(RESULTS_REPO)

        if new_leaderboard_df is not None:
            logger.info("Leaderboard data refreshed successfully")
            leaderboard_df = new_leaderboard_df
        else:
            logger.warning("No new leaderboard data found")
            return None
    except Exception as e:
        logger.error(f"Error refreshing leaderboard data: {e}")
        return None


def init_leaderboard(dataframe: pd.DataFrame):

    if dataframe is None:
        raise ValueError("Leaderboard DataFrame is None.")

    lb = Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.system.name, AutoEvalColumn.organization.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )
    lb.col_count = (1, "fixed")
    return lb


def add_solution_cbk(
    system_name: str,
    org: str,
    submission_path: str,
    profile: gr.OAuthProfile | None,
    oauth_token: gr.OAuthToken | None,
):
    logger.info("Fetching user details for submission")
    logger.info("PROFILE %s", profile)
    logger.info("TOKEN %s", oauth_token)

    if profile is None or oauth_token is None:
        return styled_error("Please sign in with Hugging Face before submitting.")

    # Display handle and display name (may change over time)
    logger.info(f"User handle: {profile.username}")
    display_name = profile.name or profile.username
    logger.info(f"Display name: {display_name}")

    # Stable account id
    user_info = fetch_user_info(oauth_token)
    logger.info("Logged in user info: %s", user_info)
    stable_id = user_info.get("id") if user_info else None
    logger.info(f"User stable ID: {stable_id}")

    if not stable_id:
        return styled_error("Could not retrieve your stable user ID. Please try signing in again.")
    user_id = stable_id

    if not profile.username:
        return styled_error("Could not retrieve username. Please try signing in again.")

    try:
        # Validating the submission file.
        if not submission_path:
            return styled_error("Please upload JSONL submission file.")

        if not is_submission_file_valid(
            submission_path,
            is_warmup_dataset=(SPLIT == "warmup"),
        ):
            return styled_error("Failed to read JSONL submission file. Please try again later.")

        # Validating all user-supplied arguments.
        for val, val_name in [
            (system_name, "System name"),
            (org, "Organisation name"),
        ]:
            if len(val) == 0:
                return styled_error(f"Please fill in the '{val_name}' field.")

            if not is_valid(val):
                return styled_error(
                    f"{val_name} is invalid! Must only contain characters [a-zA-Z0-9], spaces, "
                    + "or the special characters '-' and '.', and be of length between "
                    + f"{MIN_INPUT_LENGTH} and {MAX_INPUT_LENGTH}."
                )
    except Exception:
        logger.warning("Failed to process user submission", exc_info=True)
        return styled_error("An error occurred. Please try again later.")  # Intentionally vague.

    return add_new_solutions(
        lbdb,
        profile.username,
        user_id,
        system_name,
        org,
        submission_path,
        is_warmup_dataset=(SPLIT == "warmup"),
        ensure_all_present=ENSURE_ALL_PRESENT,
    )


def gate_submission(oauth_token: gr.OAuthToken | None):
    """
    @brief Toggles the visibility of the login box and submission panel based on the user's login status.
    """
    logger.info("GATE TOKEN %s", oauth_token)
    if oauth_token is None:
        logger.info("GATE: NO TOKEN")
        return gr.update(visible=True), gr.update(visible=False)
    try:
        whoami(oauth_token.token)
        logger.info("GATE: TOKEN IS VALID")
        return gr.update(visible=False), gr.update(visible=True)
    except Exception:
        logger.info("GATE: TOKEN HAS EXPIRED")
        return gr.update(visible=True), gr.update(visible=False)


def get_theme():
    # return gr.themes.Soft(
    #     primary_hue=gr.themes.colors.blue,
    #     secondary_hue=gr.themes.colors.sky,
    #     neutral_hue=gr.themes.colors.gray,
    # ).set(
    #     body_background_fill="#FFFFFF",
    #     panel_background_fill="#f3f4f6",
    # )
    return "light"


# --- Gradio-based tabs for examples (no JS in HTML) ---
def _select_example_tab(choice: str):
    return (
        gr.update(visible=(choice == "Shallow")),
        gr.update(visible=(choice == "Deeper")),
        gr.update(visible=(choice == "Deepest")),
    )


# === Static, made-up results for the landing chart (not tied to leaderboard) ===

MODEL_RELEASES = {
    "GPT-5": "2025-08-07",
    "Gemini 2.5 Pro": "2025-03-25",
    "Grok 4": "2025-07-09",
    "Claude Opus 4": "2025-05-22",
    "o3 Pro": "2025-06-10",
}

TIER_TOTALS = {"Shallow Tier": 100, "Deeper Tier": 100, "Deepest Tier": 20}
MODELS_ORDER = ["GPT-5", "Gemini 2.5 Pro", "Grok 4", "Claude Opus 4", "o3 Pro"]

ACCURACY_PCT = {
    "Shallow Tier": {
        "GPT-5": 49,
        "Gemini 2.5 Pro": 30,
        "Grok 4": 28,
        "Claude Opus 4": 30,
        "o3 Pro": 41,
    },
    "Deeper Tier": {
        "GPT-5": 4,
        "Gemini 2.5 Pro": 0,
        "Grok 4": 0,
        "Claude Opus 4": 0,
        "o3 Pro": 1,
    },
    "Deepest Tier": {
        "GPT-5": 0,
        "Gemini 2.5 Pro": 0,
        "Grok 4": 0,
        "Claude Opus 4": 0,
        "o3 Pro": 0,
    },
}


def build_accuracy_figure(tier: str):
    """Interactive scatter: x = release date (ISO str), y = accuracy (%). Hover shows solved/total."""
    total = TIER_TOTALS[tier]
    fig = go.Figure()

    for model in MODELS_ORDER:
        date_str = MODEL_RELEASES[model]  # e.g., "2025-08-07"
        y = ACCURACY_PCT[tier][model]  # percent
        solved = round(y * total / 100)

        fig.add_trace(
            go.Scatter(
                x=[date_str],
                y=[y],
                mode="markers",
                opacity=0.85,
                name=model,  # distinct legend entry & color per model
                marker=dict(size=8, opacity=0.85, line=dict(width=0.5)),
                cliponaxis=False,  # let markers render over axes
                hovertemplate=(
                    f"<b>{model}</b><br>"
                    "Release: %{x|%b %d, %Y}<br>"
                    "Accuracy: %{y:.1f}%<br>"
                    f"Solved: {solved}/{total}"
                    "<extra></extra>"
                ),
            )
        )

    fig.update_layout(
        template="plotly_white",
        height=420,
        margin=dict(l=30, r=120, t=10, b=40),  # extra right room for legend
        xaxis=dict(
            title="Model Release Date",
            type="date",
            tickformat="%b %Y",
            showgrid=True,
            title_standoff=10,  # small gap so the label doesn’t crowd the ticks
        ),
        yaxis=dict(
            title="Accuracy (%)",
            range=[0, 100],  # fixed 0–100
            tick0=0,
            dtick=10,
            showgrid=True,
            layer="below traces",  # draw axis below points so dots aren't “cut”
        ),
        legend=dict(title="Models", orientation="v", y=1, x=1.02, yanchor="top"),
        hovermode="closest",
    )
    return fig


_initial_accuracy_fig = build_accuracy_figure("Deeper Tier")

# Force light theme even if HF user prefers dark
blocks = gr.Blocks(
    css=custom_css,
    theme=get_theme(),
    js="""
() => {
  // Force light theme (your original)
  document.body.classList.remove('dark');
  document.documentElement.setAttribute('data-theme','light');
  document.documentElement.setAttribute('data-color-mode','light');

  // Handle <a data-tab-target="..."> to switch Gradio tabs by panel id
  document.addEventListener('click', (e) => {
    const a = e.target.closest('a[data-tab-target]');
    if (!a) return;
    e.preventDefault();
    const id = a.getAttribute('data-tab-target'); // e.g., "what-is"
    const panel = document.getElementById(id);
    if (!panel) return;

    // Find the tab header button that controls this panel and click it
    const btn = document.querySelector(`[role="tab"][aria-controls="${panel.id}"]`);
    if (btn) btn.click();
  }, true);
}
""",
)
with blocks:

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("FormulaOne", id=0, elem_id="landing-accuracy-tab"):

            gr.HTML(
                '<div align="center"><header class="text-center mb-12"><h1 class="text-4xl md:text-5xl font-bold text-gray-900 f1-h1" style="margin:0; display:inline;">FormulaOne</h1><span style="display:inline-block; margin-left:0.5em;"><h3 style="margin:0; display:inline;" class="text-4xl md:text-5xl font-bold text-gray-900 f1-h3 style=">by <a href="https://doubleai.com/">AAI</a></h3></header></div>'
            )
            with gr.Row(elem_id="landing-hero-row"):
                with gr.Column(scale=7, elem_id="landing-hero-left"):
                    gr.Markdown(
                        """
        <div class="f1-container">
        <p class="f1-hero">
            A benchmark of novel, expert-level algorithmic problems over graphs that demand deep dynamic
            programming and logical reasoning. <strong>Shallow</strong> and <strong>Deeper</strong> tiers span moderate through
            challenging problems, while <strong>Deepest</strong> is research-level.
        </p>
        </div>
        """,
                        elem_classes="markdown-text",
                    )
                with gr.Column(scale=3, elem_id="landing-hero-right"):
                    learn_more_btn = gr.Button(
                        "Learn More about FormulaOne",
                        elem_id="learn-more-pill",
                        variant="secondary",
                    )

            # Make the pill switch to the "What is FormulaOne" tab
            learn_more_btn.click(
                lambda: gr.Tabs(selected="what-is"),  # switches tabs
                inputs=None,
                outputs=tabs,  # 'tabs' is your Tabs handle
            )
            # Pill-style selector aligned to the top-right
            with gr.Row(elem_id="f1-tier-select-row"):
                tier_selector = gr.Radio(
                    choices=list(reversed(list(TIER_TOTALS.keys()))),
                    value="Deeper Tier",
                    label=None,
                    show_label=False,
                    elem_id="f1-tier-select",
                )

            accuracy_plot = gr.Plot(
                value=_initial_accuracy_fig,
                elem_id="f1-accuracy-plot",
                show_label=False,
            )

            tier_selector.change(
                lambda t: build_accuracy_figure(t),
                inputs=tier_selector,
                outputs=accuracy_plot,
            )

            # Footnote (sampling + prompt details)
            gr.Markdown(
                """
<div class="f1-container">
  <p class="f1-p" style="font-size:0.95rem;color:var(--f1-subtle);">
    All models were sampled with their highest available reasoning settings and a maximum token budget.
    We also provided the models with a diverse few-shot prompt that is highly supportive for FormulaOne problems,
    covering many of the subtle details of state design and maintenance, from a broad array of categories.
  </p>
</div>
""",
                elem_classes="markdown-text",
            )

        # Existing "What is FormulaOne" tab
        with gr.TabItem("What is FormulaOne", id="what-is", elem_id="what-is-tab"):
            gr.Image(
                "assets/banner.png",
                show_label=False,
                elem_classes=["f1-image"],
                show_share_button=False,
                show_download_button=False,
                show_fullscreen_button=False,
                width=550,
            )

            # Top content and categories table
            gr.HTML(WHAT_IS_F1_HTML_TOP)

            # ---- Bottom content pieces interleaved with real Gradio media ----
            # Up to and including the "An Infinite Well" heading
            gr.HTML(WHAT_IS_F1_HTML_BOTTOM_A_BEFORE_TABS)

            # ===== Examples (now right after the “Infinite Well” heading; inner width 710px via CSS) =====
            with gr.Group(elem_id="f1-examples", elem_classes=["f1-container"]):
                gr.HTML(
                    '<div class="f1-tabs-body"><div class="f1-examples-chip">Examples of FormulaOne problems</div></div>'
                )

                _latex = [
                    {"left": "$$", "right": "$$", "display": True},
                    {"left": "$", "right": "$", "display": False},
                    {"left": "\\(", "right": "\\)", "display": False},
                    {"left": "\\[", "right": "\\]", "display": True},
                ]

                md_warmup = gr.Markdown(
                    value=(
                        '<p style="text-align: center;"><code>Union-of-Paths-and-Cycles</code></p>\n'
                        "Given a tree-like graph $G=(V,E)$ and a weight function $w:V\\to\\mathbb{N}$, compute the sum of all weights of sets $S\\subseteq V$ such that the induced subgraph $G[S]$ is a <b>disjoint union of paths and cycles</b>."
                    ),
                    latex_delimiters=_latex,
                    elem_classes=["f1-problem-markdown"],
                )
                md_tier1 = gr.Markdown(
                    value=(
                        '<p style="text-align: center;"><code>Maximal-Union-of-Paths-and-Cycles</code></p>\n'
                        "Given a tree-like graph $G=(V,E)$ and a weight function $w:V\\to\\mathbb{N}$, compute the sum of all weights of sets $S\\subseteq V$ such that $G[S]$ is a <b>disjoint union of paths and cycles</b> and $S$ is <b>maximal</b> with respect to this property."
                    ),
                    visible=False,
                    latex_delimiters=_latex,
                    elem_classes=["f1-problem-markdown"],
                )
                md_tier2 = gr.Markdown(
                    value=(
                        '<p style="text-align: center;"><code>Maximal-Union-of-Cycles</code></p>\n'
                        "Given a tree-like graph $G=(V,E)$ and a weight function $w:V\\to\\mathbb{N}$, compute the sum of all weights of sets $S\\subseteq V$ such that $G[S]$ is a <b>disjoint union of cycles</b> and $S$ is <b>maximal</b> with respect to this property."
                    ),
                    visible=False,
                    latex_delimiters=_latex,
                    elem_classes=["f1-problem-markdown"],
                )

                tab_radio = gr.Radio(
                    choices=["Shallow", "Deeper", "Deepest"],
                    value="Shallow",
                    label=None,
                    show_label=False,
                    elem_id="f1-example-radio",
                )
                tab_radio.change(_select_example_tab, inputs=tab_radio, outputs=[md_warmup, md_tier1, md_tier2])

            # Continue the text after the heading (before the first figure)
            gr.HTML(WHAT_IS_F1_HTML_BOTTOM_A_AFTER_TABS)

            # Video (no autoplay/loop), smaller gap to caption via CSS
            gr.Video(
                "assets/DominatingSetAnimation.mp4",
                autoplay=False,
                loop=False,
                show_label=False,
                interactive=False,
                elem_classes=["f1-video"],
                show_share_button=False,
                show_download_button=False,
            )
            gr.HTML(
                '<div class="f1-figcaption f1-figcaption-video">Brief explanation showcasing the design of a compressed dynamic programming state-space.</div>'
            )

            gr.HTML(WHAT_IS_F1_HTML_AFTER_VIDEO)

            # Evaluation: Warmup figure
            gr.HTML(WHAT_IS_F1_HTML_EVAL_BEFORE_WARMUPFIG, padding=False)
            gr.Image(
                "assets/perf_plot.png",
                width=600,
                show_label=False,
                elem_classes=["f1-image"],
                show_share_button=False,
                show_download_button=False,
                show_fullscreen_button=False,
            )
            gr.HTML('<div class="f1-figcaption">Performance of frontier models on the FormulaOne dataset.</div>')

            # Tail after Deeper Tier fig
            gr.HTML(WHAT_IS_F1_HTML_AFTER_TIER1FIG_TAIL)

        # Rename tab to "Leaderboard" and cap at 800px width
        with gr.TabItem("Leaderboard", elem_id="formulaone-leaderboard-tab-table", id=2):
            gr.Markdown(
                """
                Welcome to the FormulaOne leaderboard. This table tracks performance on the core FormulaOne benchmark, covering the **deeper** and **deepest** tiers (120 problems). 
                Use the 'Select Columns to Display' dropdown to customize your view, and the search bar to find specific models or organizations.
                """,
                elem_classes="markdown-text",
            )
            refresh_leaderboard_data()
            assert leaderboard_df is not None
            leaderboard_component = init_leaderboard(leaderboard_df)

        with gr.TabItem("Submit Solutions", elem_id="formulaone-submit-tab-table", id=3):
            logger.info("Tab submission")
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your solutions", elem_classes="markdown-text")

            gr.Markdown(SUBMISSION_TERMS_TEXT, elem_classes="markdown-text")

            login_box = gr.Group(visible=True, elem_id="f1-login-box")
            with login_box:
                gr.Markdown("Please sign in with Hugging Face to submit")
                gr.LoginButton(elem_id="hf-login-btn")

            submit_panel = gr.Group(visible=False, elem_classes="markdown-text")
            with submit_panel:
                with gr.Row():
                    with gr.Column():
                        system_name_textbox = gr.Textbox(label=AutoEvalColumn.system.name)
                        org_textbox = gr.Textbox(label=AutoEvalColumn.organization.name)
                        submission_file = gr.File(label="JSONL solutions file", file_types=[".jsonl"])

                        # Required checkboxes
                        agreement_checkbox = gr.Checkbox(
                            label="I agree to the FormulaOne Submission Agreement (v1.2).",
                            value=False,
                            elem_classes="markdown-text",
                        )

                        privacy_checkbox = gr.Checkbox(
                            label="I have read the Privacy Notice.", value=False, elem_classes="markdown-text"
                        )

                        security_checkbox = gr.Checkbox(
                            label="I confirm this submission does not attempt to access private tests or exfiltrate data.",
                            value=False,
                            elem_classes="markdown-text",
                        )

                        privacy_link = "https://huggingface.co/spaces/double-ai/FormulaOne-Leaderboard/blob/main/docs/privacy-policy.md"
                        submission_agreement_link = "https://huggingface.co/spaces/double-ai/FormulaOne-Leaderboard/blob/main/terms/submission-agreement.md"

                        gr.Markdown(
                            f'<a href="{privacy_link}" target="_blank" rel="noopener noreferrer">Privacy Notice</a>; '
                            f'<a href="{submission_agreement_link}" target="_blank" rel="noopener noreferrer">Submission Agreement</a>',
                            elem_classes="markdown-text",
                        )

                        logger.info("Submit button")
                        submit_button = gr.Button("Submit", variant="primary", interactive=False)
                        submission_result = gr.Markdown()

                # Update submit button interactivity based on checkboxes
                def update_submit_button(agreement, privacy, security):
                    return gr.update(interactive=agreement and privacy and security)

                for checkbox in [agreement_checkbox, privacy_checkbox, security_checkbox]:
                    checkbox.change(
                        update_submit_button,
                        inputs=[agreement_checkbox, privacy_checkbox, security_checkbox],
                        outputs=submit_button,
                    )

                submit_button.click(
                    add_solution_cbk,
                    [
                        system_name_textbox,
                        org_textbox,
                        submission_file,
                    ],
                    submission_result,
                )

    with gr.Row():
        logger.info("Citation")
        with gr.Accordion(CITATION_BUTTON_LABEL, open=False):
            gr.Code(
                value=CITATION_BUTTON_TEXT.strip(),
                elem_id="citation-block",
            )

    blocks.load(lambda: leaderboard_df, inputs=[], outputs=[leaderboard_component])
    blocks.load(gate_submission, inputs=None, outputs=[login_box, submit_panel])


logger.info("Scheduler")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.add_job(refresh_leaderboard_data, "interval", seconds=120)
scheduler.start()
logger.info("Launch")
blocks.queue(default_concurrency_limit=40).launch()

logger.info("Done")