File size: 7,789 Bytes
1a35a11
c887522
d59421c
7ded1c5
 
0061e14
c887522
d59421c
9a983a8
416ebf1
7ded1c5
0061e14
c887522
416ebf1
61885ca
d59421c
053a0cd
48e85fc
80fb2c0
d59421c
053a0cd
 
ee85d80
3a7a1bb
 
d59421c
1a35a11
 
80fb2c0
c887522
 
d59421c
4788cde
80fb2c0
61885ca
44a4b77
6446f53
68e6b55
0061e14
1a35a11
 
 
 
 
9a983a8
54e1175
 
 
 
3a7a1bb
b37e7d1
b3d34ad
 
 
 
0672532
 
 
b3d34ad
 
0672532
 
 
b3d34ad
9d4d10e
 
 
0672532
9d4d10e
 
0672532
 
 
 
 
 
b3d34ad
9d4d10e
 
0672532
9d4d10e
0672532
 
d59421c
5048713
54e1175
5048713
61885ca
5048713
54e1175
5048713
6446f53
61885ca
0061e14
61885ca
5048713
 
 
 
 
 
 
0061e14
4788cde
0061e14
5048713
 
c887522
 
 
5f7ca36
 
 
 
 
 
a32c22a
91e9122
5f7ca36
c887522
61885ca
1a35a11
 
 
 
 
 
 
0061e14
 
34a2915
 
0061e14
7ded1c5
 
7722634
 
 
 
 
 
 
7bfe46e
 
7722634
26fc041
65e0342
26fc041
7722634
 
 
 
 
 
d55f513
 
7722634
 
 
570b23d
 
 
 
 
b3ac6f8
570b23d
b3ac6f8
 
570b23d
 
 
 
 
 
 
54e1175
7ded1c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0672532
 
b3d34ad
0672532
 
 
 
 
 
b3d34ad
0672532
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import threading
import time
from datetime import datetime, timezone, timedelta
import os
import requests

import pandas as pd
from datasets import Dataset, get_dataset_config_names
from datasets.exceptions import DatasetNotFoundError
from pandas.api.types import is_integer_dtype
import gradio as gr

from src.datamodel.data import F1Data
from src.display.formatting import styled_error, styled_message
from src.display.utils import ModelType
from src.envs import SUBMISSIONS_REPO, TOKEN
from src.logger import get_logger
from src.validation.validate import is_submission_file_valid, is_valid


logger = get_logger(__name__)

MIN_WAIT_TIME_PER_USER_HRS = 24
RATE_LIMIT_WINDOW_HRS = 24
MAX_SUBMISSIONS_PER_WINDOW = 10

submission_lock = threading.Lock()


def add_new_solutions(
    lbdb: F1Data,
    username: str,
    user_id: str,
    system_name: str,
    org: str,
    submission_path: str,
    is_warmup_dataset: bool,
    ensure_all_present: bool = False,
):
    with submission_lock:
        try:
            submitted_ids = get_dataset_config_names(SUBMISSIONS_REPO, token=TOKEN)
        except (DatasetNotFoundError, FileNotFoundError):
            submitted_ids = []

    if submitted_ids == ["default"]:
        # means empty dataset
        submitted_ids = []

    logger.info(f"Found {len(submitted_ids)} submissions")

    # Rate limits:
    #   1. Users must wait MIN_WAIT_TIME_PER_USER_HRS hours between submissions.
    #   2. No more than MAX_SUBMISSIONS_PER_WINDOW submissions RATE_LIMIT_WINDOW_HRS hours overall.

    sub_df = pd.DataFrame.from_dict(
        {
            "submission_id": submitted_ids,
            "user_id": map(_submission_id_to_user_id, submitted_ids),
            "timestamp": map(_submission_id_to_timestamp, submitted_ids),
        }
    )

    # Per user limit
    now = datetime.now(timezone.utc)
    cutoff_user = now - timedelta(hours=MIN_WAIT_TIME_PER_USER_HRS)
    user_last_submission_ts = sub_df[sub_df.user_id == user_id].timestamp.max()

    if pd.notna(user_last_submission_ts) and user_last_submission_ts > cutoff_user:
        remaining_hrs = (user_last_submission_ts - cutoff_user).total_seconds() / 3600
        logger.info(f"{username} must wait {remaining_hrs:.2f} more hours.")
        return styled_error(
            f"You must wait {MIN_WAIT_TIME_PER_USER_HRS} hours between submissions. "
            f"Remaining wait time: {remaining_hrs:.2f} hours"
        )

    # Overall limit
    cutoff_overall = now - timedelta(hours=RATE_LIMIT_WINDOW_HRS)
    if len(sub_df.timestamp > cutoff_overall) >= MAX_SUBMISSIONS_PER_WINDOW:
        logger.info(
            f"Too many submissions in the last {RATE_LIMIT_WINDOW_HRS} hours: {len(sub_df.timestamp > cutoff_overall)}."
        )
        return styled_error("The leaderboard has reached its submission capacity for now. Please try again later.")

    logger.info(
        f"Adding new submission: {system_name=}, {org=}, and {submission_path=}",
    )

    # Double-checking.
    for val in [system_name, org]:
        assert is_valid(val)
    assert is_submission_file_valid(submission_path, is_warmup_dataset=is_warmup_dataset)

    try:
        submission_df = pd.read_json(submission_path, lines=True)
        if ensure_all_present:
            _validate_all_submissions_present(lbdb=lbdb, pd_ds=submission_df)
    except Exception:
        logger.warning("Failed to parse submission DF!", exc_info=True)
        return styled_error(
            "An error occurred. Please try again later."
        )  # Use same message as external error. Avoid infoleak.

    submission_id = f"{datetime.now(timezone.utc).strftime('%Y%m%d_%H%M%S')}_{username}_{user_id}"

    # Seems good, creating the eval.
    logger.info(f"Adding new submission: {submission_id}")
    submission_ts = time.time_ns()

    def add_info(row):
        return {
            **row,
            "system_name": system_name,
            "organization": org,
            "submission_id": submission_id,
            "submission_ts": submission_ts,
            "evaluation_id": "",  # This will be set later when the evaluation is launched in the backend
            "evaluation_start_ts": "",  # This will be set when the evaluation starts
        }

    ds = Dataset.from_pandas(submission_df).map(add_info)

    with submission_lock:
        ds.push_to_hub(
            SUBMISSIONS_REPO,
            submission_id,
            private=True,
        )

    return styled_message(
        "Your request has been submitted to the evaluation queue!\n"
        + "Results may take up to 24 hours to be processed and shown in the leaderboard."
    )


def fetch_sub_claim(oauth_token: gr.OAuthToken | None) -> dict | None:
    if oauth_token is None:
        return None
    provider = os.getenv("OPENID_PROVIDER_URL")
    if not provider:
        return None
    try:
        oidc_meta = requests.get(f"{provider}/.well-known/openid-configuration", timeout=5)
        oidc_meta = oidc_meta.json()
        userinfo_ep = oidc_meta["userinfo_endpoint"]
        claims = requests.get(userinfo_ep, headers={"Authorization": f"Bearer {oauth_token.token}"}, timeout=5)
        logger.info(f"userinfo_endpoint response: status={claims.status_code}\nheaders={dict(claims.headers)}")
        claims = claims.json()
        # Typical fields: sub (stable id), preferred_username, name, picture
        return {
            "sub": claims.get("sub"),
            "preferred_username": claims.get("preferred_username"),
            "name": claims.get("name"),
        }
    except Exception as e:
        logger.warning(f"Failed to fetch user claims: {e}")
        return None


def fetch_user_info(oauth_token: gr.OAuthToken | None) -> dict | None:
    if oauth_token is None:
        return None
    try:
        headers = {"Authorization": f"Bearer {oauth_token.token}"}
        logger.info("HEADERS %s", headers)
        r = requests.get("https://huggingface.co/api/whoami-v2", headers=headers)
        logger.info("RESP CODE %s", r.status_code)
        logger.info("RESP content %s", r.text)
        if r.status_code != 200:
            return None
        return r.json()
    except:
        logger.exception("Cannot get user info")
        return None


def _validate_all_submissions_present(
    lbdb: F1Data,
    pd_ds: pd.DataFrame,
):
    logger.info(f"Validating DS size {len(pd_ds)} columns {pd_ds.columns} set {set(pd_ds.columns)}")
    expected_cols = ["problem_id", "solution"]

    if set(pd_ds.columns) != set(expected_cols):
        return ValueError(f"Expected attributes: {expected_cols}, Got: {pd_ds.columns.tolist()}")

    if not is_integer_dtype(pd_ds["problem_id"]):
        return ValueError("problem_id must be str convertible to int")

    if any(type(v) is not str for v in pd_ds["solution"]):
        return ValueError("solution must be of type str")

    submitted_ids = set(pd_ds.problem_id.astype(str))
    if submitted_ids != lbdb.code_problem_ids:
        missing = lbdb.code_problem_ids - submitted_ids
        unknown = submitted_ids - lbdb.code_problem_ids
        raise ValueError(f"Mismatched problem IDs: {len(missing)} missing, {len(unknown)} unknown")
    if len(pd_ds) > len(lbdb.code_problem_ids):
        return ValueError("Duplicate problem IDs exist in uploaded file")


def _submission_id_to_user_id(submission_id: str) -> str:
    """
    Extracts the user ID from the submission ID: "YYYYMMDD_HHMMSS_username_userid"
    """
    return submission_id.rsplit("_", 1)[-1]


def _submission_id_to_timestamp(submission_id: str) -> datetime:
    """
    Extracts the timestamp from the submission ID: "YYYYMMDD_HHMMSS_username_userid"
    """
    ts_str = "_".join(submission_id.split("_", 2)[:2])
    return datetime.strptime(ts_str, "%Y%m%d_%H%M%S").replace(tzinfo=timezone.utc)