Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,490 Bytes
a9cd8a5 0061e14 7d20cd0 0061e14 7d20cd0 40b70c8 0061e14 c887522 0061e14 7d20cd0 c887522 ed67886 7d20cd0 c887522 0061e14 ed67886 0061e14 b74992f 7d20cd0 0061e14 7d20cd0 b74992f e00a798 c887522 ed67886 c887522 7d20cd0 0061e14 560d6eb 0a476b5 560d6eb 0061e14 cc4e1bd 0a476b5 b7f5578 0061e14 7d20cd0 0061e14 2ae4354 0061e14 5604365 ed67886 0061e14 c887522 0061e14 0135bb2 0061e14 61885ca c887522 61885ca 8cfcd49 61885ca 8cfcd49 61885ca 7d20cd0 a0c6131 c887522 0061e14 61885ca a6c3f26 0061e14 7d20cd0 b74992f 7d20cd0 0061e14 a2f273a 0061e14 61885ca a0c6131 0061e14 1ab182d daa3ab0 0135bb2 0061e14 0135bb2 0061e14 1ab182d 0061e14 1ab182d f8117b4 1ab182d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
from functools import partial
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
# from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.datamodel.data import F1Data
from src.display.css_html_js import custom_css
from src.display.utils import (
# BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
)
from src.envs import API, REPO_ID, TOKEN, CODE_PROBLEMS_REPO, SUBMISSIONS_REPO, RESULTS_REPO
from src.logger import get_logger
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_solutions
logger = get_logger(__name__)
SPLIT = "warmup" # TODO temp
SKIP_VALIDATION = True # TODO temp
def restart_space():
API.restart_space(repo_id=REPO_ID)
lbdb = F1Data(cp_ds_name=CODE_PROBLEMS_REPO, sub_ds_name=SUBMISSIONS_REPO, res_ds_name=RESULTS_REPO, split=SPLIT)
leaderboard_df = get_leaderboard_df(RESULTS_REPO)
logger.info("Initialized LBDB")
# (
# finished_eval_queue_df,
# running_eval_queue_df,
# pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.system.name, AutoEvalColumn.system_type.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.system_type.name, type="checkboxgroup", label="Model types"),
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=0.01,
# max=150,
# label="Select the number of parameters (B)",
# ),
# ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
# Display image using Markdown
# banner = ""
demo = gr.Blocks(css=custom_css)
with demo:
gr.Image(
"assets/banner.png",
interactive=False,
show_label=False,
show_download_button=False,
container=False,
)
# gr.Markdown(banner)
gr.HTML(
"""
<style>
body {
background-color: #121212;
color: white;
margin: 0; /* Reset browser default */
}
/* Outer container margin & spacing */
.gradio-container {
max-width: 1100px;
margin: 2rem auto; /* top/bottom spacing + horizontal centering */
padding: 2rem; /* inner spacing */
background-color: rgba(0, 0, 0, 0.6); /* optional: semi-transparent panel */
border-radius: 12px; /* rounded corners */
}
</style>
"""
)
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
FormulaOne Leaderboard", elem_id="formulaone-leaderboar-tab-table", id=0):
leaderboard = init_leaderboard(leaderboard_df)
# with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=1):
# logger.info("Tab about")
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=2):
logger.info("Tab submission")
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# with gr.Column():
# with gr.Accordion(
# f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# finished_eval_table = gr.components.Dataframe(
# value=finished_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# running_eval_table = gr.components.Dataframe(
# value=running_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# pending_eval_table = gr.components.Dataframe(
# value=pending_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your solutions here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
system_name_textbox = gr.Textbox(label=AutoEvalColumn.system.name)
org_textbox = gr.Textbox(label=AutoEvalColumn.organization.name)
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
sys_type_dropdown = gr.Dropdown(
choices=[t.to_str(" ") for t in ModelType],
label=AutoEvalColumn.system_type.name,
multiselect=False,
value=ModelType.LLM.to_str(" "),
interactive=True,
)
# with gr.Column():
submission_file = gr.File(label="JSONL solutions file", file_types=[".jsonl"])
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
logger.info("Submit button")
submit_button = gr.Button("Submit")
submission_result = gr.Markdown()
def add_solution_cbk(system_name, org, sys_type, submission_path):
return add_new_solutions(
lbdb, system_name, org, sys_type, submission_path, skip_validation=SKIP_VALIDATION
)
submit_button.click(
add_solution_cbk,
[
system_name_textbox,
org_textbox,
sys_type_dropdown,
submission_file,
],
submission_result,
)
with gr.Row():
logger.info("Citation")
with gr.Accordion(CITATION_BUTTON_LABEL, open=False):
gr.Code(
value=CITATION_BUTTON_TEXT.strip(),
elem_id="citation-block",
)
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# # label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
logger.info("Scheduler")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
logger.info("Launch")
demo.queue(default_concurrency_limit=40).launch()
logger.info("Done")
|