File size: 9,490 Bytes
a9cd8a5
 
0061e14
7d20cd0
0061e14
 
7d20cd0
40b70c8
0061e14
 
 
 
 
 
 
 
 
c887522
 
0061e14
7d20cd0
 
 
 
 
 
 
 
 
 
 
 
c887522
ed67886
7d20cd0
 
c887522
0061e14
ed67886
0061e14
b74992f
 
 
7d20cd0
0061e14
 
 
7d20cd0
b74992f
e00a798
 
c887522
ed67886
c887522
 
 
 
 
 
 
7d20cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0061e14
 
560d6eb
0a476b5
560d6eb
0061e14
 
cc4e1bd
 
 
 
 
 
 
 
0a476b5
b7f5578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0061e14
 
 
 
7d20cd0
 
0061e14
2ae4354
 
 
0061e14
5604365
ed67886
0061e14
 
 
 
c887522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0061e14
0135bb2
0061e14
 
 
61885ca
 
c887522
61885ca
8cfcd49
61885ca
 
8cfcd49
61885ca
 
 
7d20cd0
a0c6131
c887522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0061e14
61885ca
a6c3f26
0061e14
7d20cd0
b74992f
 
 
 
7d20cd0
0061e14
a2f273a
0061e14
61885ca
 
 
a0c6131
0061e14
 
 
 
 
1ab182d
daa3ab0
0135bb2
 
 
0061e14
0135bb2
 
 
 
 
 
 
0061e14
1ab182d
0061e14
 
 
1ab182d
f8117b4
1ab182d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from functools import partial

import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler

# from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.datamodel.data import F1Data

from src.display.css_html_js import custom_css

from src.display.utils import (
    # BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
)
from src.envs import API, REPO_ID, TOKEN, CODE_PROBLEMS_REPO, SUBMISSIONS_REPO, RESULTS_REPO
from src.logger import get_logger

from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_solutions

logger = get_logger(__name__)

SPLIT = "warmup"  # TODO temp
SKIP_VALIDATION = True  # TODO temp


def restart_space():
    API.restart_space(repo_id=REPO_ID)


lbdb = F1Data(cp_ds_name=CODE_PROBLEMS_REPO, sub_ds_name=SUBMISSIONS_REPO, res_ds_name=RESULTS_REPO, split=SPLIT)
leaderboard_df = get_leaderboard_df(RESULTS_REPO)


logger.info("Initialized LBDB")

# (
#     finished_eval_queue_df,
#     running_eval_queue_df,
#     pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.system.name, AutoEvalColumn.system_type.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.system_type.name, type="checkboxgroup", label="Model types"),
            # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            # ColumnFilter(
            #     AutoEvalColumn.params.name,
            #     type="slider",
            #     min=0.01,
            #     max=150,
            #     label="Select the number of parameters (B)",
            # ),
            # ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


# Display image using Markdown
# banner = "![Leaderboard Banner](file/assets/banner.png)"

demo = gr.Blocks(css=custom_css)
with demo:
    gr.Image(
        "assets/banner.png",
        interactive=False,
        show_label=False,
        show_download_button=False,
        container=False,
    )

    # gr.Markdown(banner)
    gr.HTML(
        """
        <style>
            body {
                background-color: #121212;
                color: white;
                margin: 0;  /* Reset browser default */
            }

            /* Outer container margin & spacing */
            .gradio-container {
                max-width: 1100px;
                margin: 2rem auto;        /* top/bottom spacing + horizontal centering */
                padding: 2rem;            /* inner spacing */
                background-color: rgba(0, 0, 0, 0.6);  /* optional: semi-transparent panel */
                border-radius: 12px;      /* rounded corners */
            }
        </style>
        """
    )

    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… FormulaOne Leaderboard", elem_id="formulaone-leaderboar-tab-table", id=0):
            leaderboard = init_leaderboard(leaderboard_df)

        # with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=1):
        #     logger.info("Tab about")
        #     gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=2):
            logger.info("Tab submission")
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                # with gr.Column():
                #     with gr.Accordion(
                #         f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                #         open=False,
                #     ):
                #         with gr.Row():
                #             finished_eval_table = gr.components.Dataframe(
                #                 value=finished_eval_queue_df,
                #                 headers=EVAL_COLS,
                #                 datatype=EVAL_TYPES,
                #                 row_count=5,
                #             )
                #     with gr.Accordion(
                #         f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                #         open=False,
                #     ):
                #         with gr.Row():
                #             running_eval_table = gr.components.Dataframe(
                #                 value=running_eval_queue_df,
                #                 headers=EVAL_COLS,
                #                 datatype=EVAL_TYPES,
                #                 row_count=5,
                #             )

                #     with gr.Accordion(
                #         f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                #         open=False,
                #     ):
                #         with gr.Row():
                #             pending_eval_table = gr.components.Dataframe(
                #                 value=pending_eval_queue_df,
                #                 headers=EVAL_COLS,
                #                 datatype=EVAL_TYPES,
                #                 row_count=5,
                #             )
            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your solutions here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    system_name_textbox = gr.Textbox(label=AutoEvalColumn.system.name)
                    org_textbox = gr.Textbox(label=AutoEvalColumn.organization.name)
                    # revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    sys_type_dropdown = gr.Dropdown(
                        choices=[t.to_str(" ") for t in ModelType],
                        label=AutoEvalColumn.system_type.name,
                        multiselect=False,
                        value=ModelType.LLM.to_str(" "),
                        interactive=True,
                    )

                    # with gr.Column():
                    submission_file = gr.File(label="JSONL solutions file", file_types=[".jsonl"])
                    # precision = gr.Dropdown(
                    #     choices=[i.value.name for i in Precision if i != Precision.Unknown],
                    #     label="Precision",
                    #     multiselect=False,
                    #     value="float16",
                    #     interactive=True,
                    # )
                    # weight_type = gr.Dropdown(
                    #     choices=[i.value.name for i in WeightType],
                    #     label="Weights type",
                    #     multiselect=False,
                    #     value="Original",
                    #     interactive=True,
                    # )
                    # base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            logger.info("Submit button")
            submit_button = gr.Button("Submit")
            submission_result = gr.Markdown()

            def add_solution_cbk(system_name, org, sys_type, submission_path):
                return add_new_solutions(
                    lbdb, system_name, org, sys_type, submission_path, skip_validation=SKIP_VALIDATION
                )

            submit_button.click(
                add_solution_cbk,
                [
                    system_name_textbox,
                    org_textbox,
                    sys_type_dropdown,
                    submission_file,
                ],
                submission_result,
            )

    with gr.Row():
        logger.info("Citation")
        with gr.Accordion(CITATION_BUTTON_LABEL, open=False):
            gr.Code(
                value=CITATION_BUTTON_TEXT.strip(),
                elem_id="citation-block",
            )
            # citation_button = gr.Textbox(
            #     value=CITATION_BUTTON_TEXT,
            #     # label=CITATION_BUTTON_LABEL,
            #     lines=20,
            #     elem_id="citation-button",
            #     show_copy_button=True,
            # )

logger.info("Scheduler")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
logger.info("Launch")
demo.queue(default_concurrency_limit=40).launch()
logger.info("Done")