File size: 5,401 Bytes
7d20cd0
 
0061e14
 
 
 
 
 
7d20cd0
0061e14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d20cd0
0061e14
7d20cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00a798
7d20cd0
 
 
 
 
 
e00a798
 
7d20cd0
0061e14
 
 
 
 
 
 
 
 
 
 
7d20cd0
0061e14
 
 
 
 
7d20cd0
0061e14
 
 
61885ca
 
 
 
 
0061e14
 
 
 
 
 
61885ca
 
 
 
 
 
 
 
 
0061e14
7d20cd0
0061e14
 
 
 
 
7d20cd0
0061e14
 
 
 
 
 
 
 
 
 
 
 
7d20cd0
0061e14
 
 
 
 
 
7d20cd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from dataclasses import dataclass, field, make_dataclass
from typing import ClassVar
from enum import Enum

import pandas as pd

from src.about import Tasks


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False


## Leaderboard columns
# auto_eval_column_fields = []
# # Init
# auto_eval_column_fields.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
# auto_eval_column_fields.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# # Scores
# auto_eval_column_fields.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
# for task in Tasks:
#     auto_eval_column_fields.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# # Model information
# auto_eval_column_fields.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
# auto_eval_column_fields.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
# auto_eval_column_fields.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
# auto_eval_column_fields.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
# auto_eval_column_fields.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
# auto_eval_column_fields.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
# auto_eval_column_fields.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
# auto_eval_column_fields.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
# auto_eval_column_fields.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
#
#
#
# def make_classvar_dataclass(name: str, spec: list):
#     ns = {"__annotations__": {}}
#     for field_name, field_type, default in spec:
#         # Mark as ClassVar so dataclass doesn't treat it as an instance field
#         ns["__annotations__"][field_name] = ClassVar[field_type]
#         ns[field_name] = default
#     # No instance fields; just class-level descriptors
#     return make_dataclass(name, [], frozen=True, namespace=ns)
#
# # We use make dataclass to dynamically fill the scores from Tasks
# AutoEvalColumn = make_classvar_dataclass("AutoEvalColumn", auto_eval_column_fields)


@dataclass(frozen=True)
class AutoEvalColumn:
    system = ColumnContent("System Name", "markdown", True, never_hidden=True)
    system_type = ColumnContent("System Type", "str", True)
    organization = ColumnContent("Organization", "str", True, never_hidden=True)
    success_rate = ColumnContent("Success Rate (%)", "number", True)
    problems_solved = ColumnContent("Problems Solved", "number", True)
    submitted_on = ColumnContent("Submitted On", "datetime", True)


## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)


## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class ModelType(Enum):
    LLM = ModelDetails(name="LLM", symbol="🟢")
    AgenticLLM = ModelDetails(name="AgenticLLM", symbol="🔶")
    # IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
    # RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Other = ModelDetails(name="Other", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "AgenticLLM" in type or "🔶" in type:
            return ModelType.AgenticLLM
        if "LLM" in type or "🟢" in type:
            return ModelType.LLM
        # if "RL-tuned" in type or "🟦" in type:
        #     return ModelType.RL
        # if "instruction-tuned" in type or "⭕" in type:
        #     return ModelType.IFT
        return ModelType.Other


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")


class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        return Precision.Unknown


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

# BENCHMARK_COLS = [t.value.col_name for t in Tasks]