import json import os import pandas as pd from datasets import load_dataset, get_dataset_config_names from datasets.exceptions import DatasetNotFoundError from tqdm.auto import tqdm from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.envs import TOKEN from src.leaderboard.read_evals import get_raw_eval_results from src.logger import get_logger logger = get_logger(__name__) def get_leaderboard_df(results_dataset_name: str) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" try: configs = get_dataset_config_names(results_dataset_name, token=TOKEN) except (DatasetNotFoundError, FileNotFoundError): # Return an empty DataFrame with expected columns return pd.DataFrame( columns=[ "System Name", "System Type", "Organization", "Success Rate (%)", "Problems Solved", "Submitted On", ] ) rows = [] for submission_id in tqdm(configs, total=len(configs), desc="Processing Submission Results"): submission_ds = load_dataset(results_dataset_name, submission_id, split="train", token=TOKEN) submission_df = pd.DataFrame(submission_ds) if submission_df.empty or "did_pass" not in submission_df.columns or submission_df.did_pass.isna().any(): logger.warning(f"Skipping {submission_id} due to invalid did_pass values") continue success_rate = 100 * submission_df["did_pass"].mean() num_solved = submission_df["did_pass"].sum() first_row = submission_df.iloc[0] rows.append( { "System Name": first_row["system_name"], "System Type": first_row["system_type"], "Organization": first_row["organization"], "Success Rate (%)": success_rate, "Problems Solved": num_solved, "Submitted On": pd.to_datetime(first_row["submission_ts"]).strftime("%Y-%m-%d %H:%M"), } ) full_df = pd.DataFrame(rows) # TODO: forbid multiple submissions under the same name? # Keep only the latest entry per unique (System Name, System Type, Organization) triplet final_df = ( full_df.sort_values("Submitted On", ascending=False) .drop_duplicates(subset=["System Name", "System Type", "Organization"], keep="first") .sort_values(by=[AutoEvalColumn.success_rate.name], ascending=False) .reset_index(drop=True) ) cols_to_round = ["Success Rate (%)"] final_df[cols_to_round] = final_df[cols_to_round].round(decimals=2) return final_df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]