File size: 76,645 Bytes
4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a f0ee4e1 f71c02a f0ee4e1 f71c02a 9e8b27c f71c02a f0ee4e1 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 1635a40 8fc4cc4 1635a40 8fc4cc4 1635a40 8fc4cc4 f71c02a 8fc4cc4 1635a40 8fc4cc4 f71c02a 8fc4cc4 1635a40 8fc4cc4 f71c02a 1635a40 8fc4cc4 f71c02a 8fc4cc4 1635a40 8fc4cc4 f71c02a 4857b64 f71c02a 4857b64 f71c02a e0bf609 f71c02a f0ee4e1 f71c02a 4857b64 f71c02a 9e8b27c f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 4857b64 f71c02a 1635a40 f71c02a 1635a40 f71c02a 1635a40 f71c02a 1635a40 f71c02a 4857b64 f71c02a 1635a40 f71c02a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 |
import os
import zipfile
import shutil
import time
from PIL import Image, ImageDraw
from io import BytesIO
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor
from transformers import AutoModelForImageSegmentation, pipeline
import numpy as np
import pandas as pd
import json
import requests
from dotenv import load_dotenv
import torch
from torchvision import transforms
from functools import lru_cache
import cv2
import pillow_avif
import threading
from collections import Counter
from transformers.configuration_utils import PretrainedConfig
if not hasattr(PretrainedConfig, "get_text_config"):
PretrainedConfig.get_text_config = lambda self: None
stop_event = threading.Event()
# Load environment variables
load_dotenv()
PHOTOROOM_API_KEY = os.getenv("PHOTOROOM_API_KEY", "e98517e5e68a1a2eee49b130c2bcef05c1faec42")
_birefnet_model = None
_birefnet_transform = None
_birefnet_hr_model = None
_birefnet_hr_transform = None
@lru_cache(maxsize=1)
def get_birefnet_model():
global _birefnet_model, _birefnet_transform
if _birefnet_model is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
_birefnet_model = AutoModelForImageSegmentation.from_pretrained(
'ZhengPeng7/BiRefNet',
trust_remote_code=True,
torch_dtype=torch.float32
).to(device)
if not hasattr(_birefnet_model.config, "get_text_config"):
_birefnet_model.config.get_text_config = lambda: None
_birefnet_model.eval()
_birefnet_transform = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
return _birefnet_model, _birefnet_transform
def get_birefnet_hr_model():
global _birefnet_hr_model, _birefnet_hr_transform
if _birefnet_hr_model is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
_birefnet_hr_model = AutoModelForImageSegmentation.from_pretrained(
'ZhengPeng7/BiRefNet_HR',
trust_remote_code=True,
torch_dtype=torch.float32
).to(device)
if not hasattr(_birefnet_hr_model.config, "get_text_config"):
_birefnet_hr_model.config.get_text_config = lambda: None
_birefnet_hr_model.eval()
_birefnet_hr_transform = transforms.Compose([
transforms.Resize((2048, 2048)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
return _birefnet_hr_model, _birefnet_hr_transform
def remove_background_rembg(input_path):
print(f"Removing background using rembg for image: {input_path}")
with open(input_path, 'rb') as f:
input_image = f.read()
out_data = remove(input_image)
return Image.open(io.BytesIO(out_data)).convert("RGBA")
def remove_background_bria(input_path):
print(f"Removing background using bria for image: {input_path}")
device = 0 if torch.cuda.is_available() else -1
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True, device=device)
result = pipe(input_path)
if isinstance(result, list) and len(result) > 0 and "mask" in result[0]:
mask = result[0]["mask"]
else:
mask = result
if mask.mode != "RGBA":
mask = mask.convert("RGBA")
return mask
def remove_background_birefnet(input_path):
try:
model, transform_image = get_birefnet_model()
device = next(model.parameters()).device
image = Image.open(input_path).convert("RGB")
input_tensor = transform_image(image).unsqueeze(0).to(device)
with torch.no_grad():
try:
preds = model(input_tensor)[-1].sigmoid()
pred_mask = preds[0].squeeze().cpu()
except RuntimeError as e:
if 'out of memory' in str(e):
if torch.cuda.is_available():
torch.cuda.empty_cache()
input_tensor = input_tensor.cpu()
model = model.cpu()
preds = model(input_tensor)[-1].sigmoid()
pred_mask = preds[0].squeeze()
model = model.to(device)
else:
raise e
mask_pil = transforms.ToPILImage()(pred_mask)
mask_resized = mask_pil.resize(image.size, Image.LANCZOS)
result = image.copy()
result.putalpha(mask_resized)
result_array = np.array(result)
alpha = result_array[:, :, 3]
_, alpha = cv2.threshold(alpha, 248, 255, cv2.THRESH_BINARY)
kernel_small = np.ones((3, 3), np.uint8)
kernel_medium = np.ones((5, 5), np.uint8)
kernel_large = np.ones((9, 9), np.uint8)
alpha = cv2.GaussianBlur(alpha, (5, 5), 0)
alpha = cv2.morphologyEx(alpha, cv2.MORPH_OPEN, kernel_small, iterations=3)
alpha = cv2.morphologyEx(alpha, cv2.MORPH_CLOSE, kernel_medium, iterations=3)
alpha = cv2.morphologyEx(alpha, cv2.MORPH_CLOSE, kernel_large, iterations=2)
alpha = cv2.bilateralFilter(alpha, 9, 100, 100)
alpha = cv2.medianBlur(alpha, 5)
_, alpha = cv2.threshold(alpha, 248, 255, cv2.THRESH_BINARY)
alpha = cv2.morphologyEx(alpha, cv2.MORPH_OPEN, kernel_small, iterations=2)
alpha = cv2.morphologyEx(alpha, cv2.MORPH_CLOSE, kernel_small, iterations=2)
edges = cv2.Canny(alpha, 100, 200)
alpha = cv2.morphologyEx(alpha, cv2.MORPH_CLOSE, kernel_medium, iterations=1)
alpha = cv2.subtract(alpha, edges)
result_array[:, :, 3] = alpha
result = Image.fromarray(result_array)
if torch.cuda.is_available():
torch.cuda.empty_cache()
return result
except Exception as e:
print(f"Error in remove_background_birefnet: {str(e)}")
import traceback
traceback.print_exc()
raise
def remove_background_birefnet_2(input_path):
model, transform_image = get_birefnet_model()
device = next(model.parameters()).device
image = Image.open(input_path).convert("RGB")
input_tensor = transform_image(image).unsqueeze(0).to(device)
with torch.no_grad():
try:
preds = model(input_tensor)[-1].sigmoid()
pred_mask = preds[0].squeeze().cpu()
except RuntimeError as e:
if 'out of memory' in str(e):
if torch.cuda.is_available():
torch.cuda.empty_cache()
input_tensor = input_tensor.cpu()
model = model.cpu()
preds = model(input_tensor)[-1].sigmoid()
pred_mask = preds[0].squeeze()
model = model.to(device)
else:
raise e
mask_pil = transforms.ToPILImage()(pred_mask)
mask_resized = mask_pil.resize(image.size, Image.LANCZOS)
result = image.copy()
result.putalpha(mask_resized)
if torch.cuda.is_available():
torch.cuda.empty_cache()
return result
def remove_background_birefnet_hr(input_path):
try:
model, transform_img = get_birefnet_hr_model()
device = next(model.parameters()).device
img = Image.open(input_path).convert("RGB")
t_in = transform_img(img).unsqueeze(0).to(device)
with torch.no_grad():
preds = model(t_in)[-1].sigmoid()
mask = preds[0].squeeze().cpu()
mask_pil = transforms.ToPILImage()(mask).resize(img.size, Image.LANCZOS)
out = img.copy()
out.putalpha(mask_pil)
return out.convert("RGBA")
except Exception as e:
print(f"remove_background_birefnet_hr: {e}")
return None
def remove_background_photoroom(input_path):
if input_path.lower().endswith('.avif'):
input_path = convert_avif(input_path, input_path.rsplit('.', 1)[0] + '.png', 'PNG')
if not PHOTOROOM_API_KEY:
raise ValueError("Photoroom API key missing.")
url = "https://sdk.photoroom.com/v1/segment"
headers = {"Accept": "image/png, application/json", "x-api-key": PHOTOROOM_API_KEY}
with open(input_path, "rb") as f:
resp = requests.post(url, headers=headers, files={"image_file": f})
if resp.status_code != 200:
raise Exception(f"PhotoRoom API error: {resp.status_code} - {resp.text}")
return Image.open(BytesIO(resp.content)).convert("RGBA")
def remove_background_none(input_path):
print(f"Removing background using none for image: {input_path}")
return Image.open(input_path).convert("RGBA")
def get_dominant_color(image):
tmp = image.convert("RGBA")
tmp.thumbnail((100, 100))
ccount = Counter(tmp.getdata())
return ccount.most_common(1)[0][0]
def convert_avif(input_path, output_path, output_format='PNG'):
with Image.open(input_path) as img:
if output_format == 'JPG':
img.convert("RGB").save(output_path, "JPEG") # Convert to JPG (RGB mode)
else:
img.save(output_path, "PNG") # Convert to PNG
return output_path
def rotate_image(image, rotation, direction):
if not image or rotation == "None":
return image
if rotation == "90 Degrees":
angle = 90 if direction == "Clockwise" else -90
elif rotation == "180 Degrees":
angle = 180
else:
angle = 0
return image.rotate(angle, expand=True)
def flip_image(image):
return image.transpose(Image.FLIP_LEFT_RIGHT)
def get_bounding_box_with_threshold(image, threshold=10):
arr = np.array(image)
alpha = arr[:, :, 3]
rows = np.any(alpha > threshold, axis=1)
cols = np.any(alpha > threshold, axis=0)
r_idx = np.where(rows)[0]
c_idx = np.where(cols)[0]
if r_idx.size == 0 or c_idx.size == 0:
return None
top, bottom = r_idx[0], r_idx[-1]
left, right = c_idx[0], c_idx[-1]
if left < right and top < bottom:
return (left, top, right, bottom)
else:
return None
## === NEW ==
def position_logic_old(image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left,
use_threshold=True, bg_method=None, is_person=False,
snap_to_top=False, snap_to_bottom=False, snap_to_left=False, snap_to_right=False):
"""
Position and resize an image on a canvas based on snapping, cropped sides, and birefnet logic.
Args:
image_path (str): Path to the input image.
canvas_size (tuple): Target canvas size (width, height).
padding_top, padding_right, padding_bottom, padding_left (int): Padding on each side.
use_threshold (bool): Use threshold-based bounding box detection.
bg_method (str): Background removal method ('birefnet', 'birefnet_2', etc.).
is_person (bool): Treat as a person image (snaps to bottom by default).
snap_to_top, snap_to_bottom, snap_to_left, snap_to_right (bool): Snap to respective sides.
Returns:
tuple: (log, resized_image, x_position, y_position)
"""
# Load and prepare the image
image = Image.open(image_path).convert("RGBA")
log = []
x, y = 0, 0
# Get bounding box and crop
if use_threshold:
bbox = get_bounding_box_with_threshold(image, threshold=10) # Assume this function exists
else:
bbox = image.getbbox()
if bbox:
# Detect cropped sides
width, height = image.size
cropped_sides = []
tolerance = 30
if any(image.getpixel((x, 0))[3] > tolerance for x in range(width)):
cropped_sides.append("top")
if any(image.getpixel((x, height-1))[3] > tolerance for x in range(width)):
cropped_sides.append("bottom")
if any(image.getpixel((0, y))[3] > tolerance for y in range(height)):
cropped_sides.append("left")
if any(image.getpixel((width-1, y))[3] > tolerance for y in range(height)):
cropped_sides.append("right")
if cropped_sides:
log.append({"info": f"The following sides may contain cropped objects: {', '.join(cropped_sides)}"})
else:
log.append({"info": "The image is not cropped."})
image = image.crop(bbox)
log.append({"action": "crop", "bbox": [str(bbox[0]), str(bbox[1]), str(bbox[2]), str(bbox[3])]})
# Setup variables
target_width, target_height = canvas_size
aspect_ratio = image.width / image.height
# Determine active snaps
snaps_active = []
if padding_top == 0 or snap_to_top:
snaps_active.append("top")
if padding_bottom == 0 or snap_to_bottom or is_person:
snaps_active.append("bottom")
if padding_left == 0 or snap_to_left:
snaps_active.append("left")
if padding_right == 0 or snap_to_right:
snaps_active.append("right")
# Snap handling
if snaps_active:
if "top" in snaps_active and "bottom" in snaps_active:
# Dual vertical snap: fill height
new_height = target_height
new_width = int(new_height * aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
y = 0
if "left" in snaps_active:
x = 0
elif "right" in snaps_active:
x = target_width - new_width
else:
x = (target_width - new_width) // 2
log.append({"action": "resize_snap_vertical", "new_width": str(new_width), "new_height": str(new_height)})
log.append({"action": "position_snap_vertical", "x": str(x), "y": str(y)})
elif "left" in snaps_active and "right" in snaps_active:
# Dual horizontal snap: fill width
new_width = target_width
new_height = int(new_width / aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
x = 0
if "top" in snaps_active:
y = 0
elif "bottom" in snaps_active:
y = target_height - new_height
else:
y = (target_height - new_height) // 2
log.append({"action": "resize_snap_horizontal", "new_width": str(new_width), "new_height": str(new_height)})
log.append({"action": "position_snap_horizontal", "x": str(x), "y": str(y)})
else:
# Original snap logic
available_width = target_width
available_height = target_height
if "left" not in snaps_active:
available_width -= padding_left
if "right" not in snaps_active:
available_width -= padding_right
if "top" not in snaps_active:
available_height -= padding_top
if "bottom" not in snaps_active:
available_height -= padding_bottom
if aspect_ratio < 1: # Portrait
new_height = available_height
new_width = int(new_height * aspect_ratio)
if new_width > available_width:
new_width = available_width
new_height = int(new_width / aspect_ratio)
else: # Landscape
new_width = available_width
new_height = int(new_width / aspect_ratio)
if new_height > available_height:
new_height = available_height
new_width = int(new_height * aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
if "left" in snaps_active:
x = 0
elif "right" in snaps_active:
x = target_width - new_width
else:
x = padding_left + (available_width - new_width) // 2
if "top" in snaps_active:
y = 0
elif "bottom" in snaps_active:
y = target_height - new_height
else:
y = padding_top + (available_height - new_height) // 2
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
log.append({"action": "position", "x": str(x), "y": str(y)})
else:
# No snaps: use cropped sides logic
if len(cropped_sides) == 4:
# All sides cropped: center crop to fit
if aspect_ratio > 1:
new_height = target_height
new_width = int(new_height * aspect_ratio)
left = (new_width - target_width) // 2
image = image.resize((new_width, new_height), Image.LANCZOS)
image = image.crop((left, 0, left + target_width, target_height))
else:
new_width = target_width
new_height = int(new_width / aspect_ratio)
top = (new_height - target_height) // 2
image = image.resize((new_width, new_height), Image.LANCZOS)
image = image.crop((0, top, target_width, top + target_height))
x, y = 0, 0
log.append({"action": "center_crop_resize", "new_size": f"{target_width}x{target_height}"})
elif not cropped_sides:
# No cropping: fit within padding
new_height = target_height - padding_top - padding_bottom
new_width = int(new_height * aspect_ratio)
if new_width > target_width - padding_left - padding_right:
new_width = target_width - padding_left - padding_right
new_height = int(new_width / aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
x = (target_width - new_width) // 2
y = target_height - new_height - padding_bottom
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
log.append({"action": "position", "x": str(x), "y": str(y)})
else:
# Partial cropping: implement specific cases as needed
# For simplicity, assume centering as a fallback
new_width = target_width - padding_left - padding_right
new_height = int(new_width / aspect_ratio)
if new_height > target_height - padding_top - padding_bottom:
new_height = target_height - padding_top - padding_bottom
new_width = int(new_height * aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
x = (target_width - new_width) // 2
y = (target_height - new_height) // 2
log.append({"action": "resize_partial_crop", "new_width": str(new_width), "new_height": str(new_height)})
log.append({"action": "position_partial_crop", "x": str(x), "y": str(y)})
# Birefnet override
if bg_method in ['birefnet', 'birefnet_2']:
target_width = min(canvas_size[0] // 2, image.width)
target_height = min(canvas_size[1] // 2, image.height)
if aspect_ratio > 1:
new_width = target_width
new_height = int(new_width / aspect_ratio)
else:
new_height = target_height
new_width = int(new_height * aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
x = (canvas_size[0] - new_width) // 2
y = (canvas_size[1] - new_height) // 2
log.append({"action": "birefnet_resize", "new_size": f"{new_width}x{new_height}", "position": f"{x},{y}"})
return log, image, x, y
def position_logic_none(image, canvas_size):
target_width, target_height = canvas_size
aspect_ratio = image.width / image.height
# Berikan margin di semua sisi (misalnya 50px dari setiap tepi)
margin = 50
available_width = target_width - (2 * margin)
available_height = target_height - (2 * margin)
# Scale factor untuk memperkecil gambar (85% dari ukuran available space)
scale_factor = 0.85
max_width = int(available_width * scale_factor)
max_height = int(available_height * scale_factor)
# Tentukan ukuran yang tepat dengan mempertahankan aspect ratio
# dan memastikan gambar tidak terlalu besar (diperkecil dulu)
if aspect_ratio > 1: # landscape
new_width = min(max_width, target_width - (2 * margin))
new_height = int(new_width / aspect_ratio)
if new_height > max_height:
new_height = max_height
new_width = int(new_height * aspect_ratio)
else: # portrait
new_height = min(max_height, target_height - (2 * margin))
new_width = int(new_height * aspect_ratio)
if new_width > max_width:
new_width = max_width
new_height = int(new_width / aspect_ratio)
# Resize gambar dengan ukuran baru (lebih kecil)
image = image.resize((new_width, new_height), Image.LANCZOS)
# Posisi tengah canvas
x = (target_width - new_width) // 2
y = (target_height - new_height) // 2
print(f"Image scaled down and centered: original_size={image.size}, new_size={new_width}x{new_height}, position=({x},{y}), margin={margin}px")
log = [{"action": "scale_down_and_center", "new_size": f"{new_width}x{new_height}", "position": f"{x},{y}", "margin": f"{margin}px"}]
return log, image, x, y
# ------------------ Qwen 2.5VL Inference Functions & Model Loading ------------------
import base64
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer
import tempfile
import os
import base64
def encode_image(image_path):
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
return base64.b64encode(image_bytes).decode('utf-8')
except Exception as e:
print(f"Error in encode_image: {str(e)}")
raise
def classify_image(image_path, unique_items):
try:
image = Image.open(image_path).convert("RGB")
image = image.resize((224, 224), Image.LANCZOS)
print(f"Classifying image: {image_path} (resized to {image.size})")
prompt = (
f"Classify this image into one of these categories: {', '.join(unique_items)}. "
f"Be sensitive to sizes of an object, e.g. 'small' or 'medium' or 'large', especially for bags. "
f"If a hand is detected, only pick classifications that mention 'hand', however if it\'s a human, only pick classifications which mentioned 'human'. "
f"Return only the classification word, nothing else."
)
# Save resized image to a temporary file
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
image.save(temp_file.name, format='PNG')
temp_image_path = temp_file.name
# Get raw classification from API with retry logic
classification_result = inference_with_api(temp_image_path, prompt)
print(f"Raw API response for {image_path}: '{classification_result}'")
# Clean up temporary file
os.unlink(temp_image_path)
# Parse and match the classification result
classification_result = classification_result.strip().lower()
for item in unique_items:
if item.lower() in classification_result:
print(f"Matched classification for {image_path}: '{item}'")
return item
print(f"No matching classification found in response: '{classification_result}'. Expected one of: {unique_items}")
return None
except Exception as e:
print(f"Error during classification for {image_path}: {str(e)}")
return None
def analyze_image_for_snap_settings(image_path):
"""
Menganalisis gambar menggunakan Qwen untuk menentukan pengaturan snap yang tepat
"""
try:
prompt = (
"Analyze this product/model/person image and determine if it should be flush against any edges of the canvas.\n\n"
"For each edge (top, bottom, left, right), determine if the image should have padding=0 for that edge based on these specific rules:\n\n"
"1. snap_bottom=true: If it's a person/model (almost always), or if the bottom of the product is cropped or should align with bottom edge\n\n"
"2. snap_left=true: If the left side of a HAND or PRODUCT is cut off or flush against the edge, or if the hand or product is shown from side view facing left\n\n"
"3. snap_right=true: If the right side a HAND or PRODUCT is cut off or flush against the edge, or if the hand or product is shown from side view facing right\n\n"
"4. snap_top=true: If it's a person/model (almost always) or if the top of the product is cut off or should align with top edge\n\n"
"Pay special attention to product orientation: side views often need snap_left or snap_right, while front/back views may not.\n\n"
"EXAMPLES:\n"
"- For a swimwear model standing and showing profile view: {\"snap_top\": false, \"snap_right\": false, \"snap_bottom\": true, \"snap_left\": true}\n"
"- For a handbag shown from the side with handle at top: {\"snap_top\": false, \"snap_right\": false, \"snap_bottom\": true, \"snap_left\": true}\n"
"- For a bikini bottom piece shown from front: {\"snap_top\": false, \"snap_right\": false, \"snap_bottom\": false, \"snap_left\": false}\n"
"- For a swimsuit top on a model shown from side: {\"snap_top\": false, \"snap_right\": true, \"snap_bottom\": false, \"snap_left\": false}\n\n"
"Common combinations:\n"
"- For people/models, usually snap_bottom=true, snap_top=true and sometimes snap_left or snap_right depending on pose\n"
"- For bags shown from side, use both snap_bottom=true and either snap_left=true or snap_right=true\n"
"- For footwear shown from side, consider snap_bottom=true and either snap_left=true or snap_right=true\n"
"- For items cropped on multiple sides, set all appropriate snap values to true\n\n"
"Return ONLY a valid JSON in this exact format: {\"snap_top\": true/false, \"snap_right\": true/false, \"snap_bottom\": true/false, \"snap_left\": true/false}"
)
# Save image to a temporary file
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
image = Image.open(image_path)
image.save(temp_file.name, format='PNG')
temp_image_path = temp_file.name
# Get analysis from API
analysis_result = inference_with_api(temp_image_path, prompt)
print(f"Raw analysis response for {image_path}: '{analysis_result}'")
# Clean up temporary file
os.unlink(temp_image_path)
# Parse JSON from the response
try:
# Coba parse langsung dulu
try:
snap_settings = json.loads(analysis_result)
if all(key in snap_settings for key in ["snap_top", "snap_right", "snap_bottom", "snap_left"]):
print(f"Direct JSON parsing successful for {image_path}: {snap_settings}")
return snap_settings
except:
pass # Lanjut ke regex jika direct parsing gagal
# Mencari JSON dalam respons menggunakan regex
import re
json_match = re.search(r'(\{.*?\})', analysis_result, re.DOTALL)
if json_match:
json_str = json_match.group(1)
snap_settings = json.loads(json_str)
print(f"Parsed snap settings for {image_path}: {snap_settings}")
return snap_settings
else:
print(f"No JSON found in response for {image_path}")
return None
except json.JSONDecodeError as e:
print(f"Failed to parse JSON from response for {image_path}: {e}")
return None
except Exception as e:
print(f"Error during snap setting analysis for {image_path}: {str(e)}")
return None
def analyze_image_pattern(image_path):
"""
Analyzes image patterns to determine snap settings based on cropped sides, whitespace, and content distribution.
"""
try:
# Initialize snap settings
settings = {
'snap_top': False,
'snap_right': False,
'snap_bottom': False,
'snap_left': False
}
# Load and convert image to RGBA
img = Image.open(image_path).convert("RGBA")
img_np = np.array(img)
height, width = img_np.shape[:2]
aspect_ratio = height / width
# Define mask for foreground pixels (alpha > 128)
mask = img_np[:, :, 3] > 128
# **Detect cropped sides** (foreground pixels within 5 pixels of edges)
top_cropped = np.any(mask[:5, :])
bottom_cropped = np.any(mask[-5:, :])
left_cropped = np.any(mask[:, :5])
right_cropped = np.any(mask[:, -5:])
# **Detect big whitespace** (regions with >80% pixels having alpha < 128)
top_whitespace = np.mean(img_np[:height//4, :, 3] < 128) > 0.8
bottom_whitespace = np.mean(img_np[height - height//4:, :, 3] < 128) > 0.8
left_whitespace = np.mean(img_np[:, :width//4, 3] < 128) > 0.8
right_whitespace = np.mean(img_np[:, width - width//4:, 3] < 128) > 0.8
# **Apply user-specified rules**
if top_whitespace and bottom_whitespace and top_cropped and bottom_cropped:
settings['snap_top'] = True
settings['snap_bottom'] = True
if top_whitespace and bottom_whitespace and left_whitespace and top_cropped and bottom_cropped and left_cropped:
settings['snap_top'] = True
settings['snap_bottom'] = True
settings['snap_left'] = True
if top_whitespace and bottom_whitespace and right_whitespace and top_cropped and bottom_cropped and right_cropped:
settings['snap_top'] = True
settings['snap_bottom'] = True
settings['snap_right'] = True
if bottom_whitespace and not top_whitespace and not left_whitespace and not right_whitespace and bottom_cropped and not top_cropped and not left_cropped and not right_cropped:
settings['snap_bottom'] = True
if top_whitespace and not bottom_whitespace and not left_whitespace and not right_whitespace and top_cropped and not bottom_cropped and not left_cropped and not right_cropped:
settings['snap_top'] = True
# **Additional logic from previous code**
# Set snap_bottom for portrait images if not already set
# Analyze vertical distribution for snap_top if not already set
if not settings['snap_bottom']:
bottom_foreground_ratio = np.mean(mask[height - height//4:, :])
if bottom_foreground_ratio > 0.05: # More than 5% foreground pixels in top quarter
settings['snap_bottom'] = True
# Analyze horizontal distribution if left or right snaps are not set
if not (settings['snap_left'] or settings['snap_right']):
horizontal_dist = np.sum(mask, axis=0)
left_sum = np.sum(horizontal_dist[:width//3])
right_sum = np.sum(horizontal_dist[2*width//3:])
if left_sum > 1.5 * right_sum:
settings['snap_left'] = True
elif right_sum > 1.5 * left_sum:
settings['snap_right'] = True
# Analyze vertical distribution for snap_top if not already set
if not settings['snap_top'] and aspect_ratio > 1.5:
settings['snap_top'] = True
return settings
except Exception as e:
print(f"Error in analyze_image_pattern: {e}")
return {
'snap_top': False,
'snap_right': False,
'snap_bottom': False,
'snap_left': False
}
# ------------------ Modified process_single_image ------------------
def process_single_image(
image_path,
output_folder,
bg_method,
canvas_size_name,
output_format,
bg_choice,
custom_color,
watermark_path=None,
twibbon_path=None,
rotation=None,
direction=None,
flip=False,
use_old_position=True,
sheet_data=None, # DataFrame with sheet data (if provided)
use_qwen=False,
snap_to_bottom=False,
snap_to_top=False,
snap_to_left=False,
snap_to_right=False,
auto_snap=False # Tambahan parameter untuk mengaktifkan auto snap
):
filename = os.path.basename(image_path)
base_no_ext, ext = os.path.splitext(filename.lower())
add_padding_line = False
# ================== FULL SET OF CANVAS SIZE IFS ==================
# Handle custom canvas size as tuple
if isinstance(canvas_size_name, tuple):
canvas_size = canvas_size_name
padding_top = 100
padding_right = 100
padding_bottom = 100
padding_left = 100
elif canvas_size_name == 'Rox- Columbia & Keen':
canvas_size = (1080, 1080)
padding_top = 112
padding_right = 126
padding_bottom = 116
padding_left = 126
elif canvas_size_name == 'Jansport- Zalora':
canvas_size = (762, 1100)
padding_top = 108
padding_right = 51
padding_bottom = 202
padding_left = 51
elif canvas_size_name == 'Shopify & Lazada- Herschel':
canvas_size = (1080, 1080)
padding_top = 200
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'Zalora- Herschel & Hedgren':
canvas_size = (762, 1100)
padding_top = 51
padding_right = 51
padding_bottom = 202
padding_left = 51
elif canvas_size_name == 'Jansport & Bratpack & Travelon & Hedgren- Lazada':
canvas_size = (1080, 1080)
padding_top = 180
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'Jansport-Human- Lazada':
canvas_size = (1080, 1080)
padding_top = 72
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'DC- Shopify':
canvas_size = (1000, 1000)
padding_top = 50
padding_right = 80
padding_bottom = 50
padding_left = 80
elif canvas_size_name == 'DC- S&L':
canvas_size = (1080, 1080)
padding_top = 180
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'ROX- Hydroflask-Shopify':
canvas_size = (1080, 1080)
padding_top = 112
padding_right = 280
padding_bottom = 116
padding_left = 274
elif canvas_size_name == 'Delsey- Lazada & Shopee':
canvas_size = (1080, 1080)
padding_top = 180
padding_right = 72
padding_bottom = 180
padding_left = 72
elif canvas_size_name == 'Grind- Keen- Shopify':
canvas_size = (1124, 1285)
padding_top = 32
padding_right = 127
padding_bottom = 80
padding_left = 132
elif canvas_size_name == 'Bratpack- Gregory & DBTK- Shopify':
canvas_size = (900, 1200)
padding_top = 72
padding_right = 66
padding_bottom = 63
padding_left = 66
elif canvas_size_name == 'Columbia- Lazada':
canvas_size = (1080, 1080)
padding_top = 72
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'Topo Design MP- Tiktok':
canvas_size = (1080, 1080)
padding_top = 200
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'Columbia- Shopee & Zalora':
canvas_size = (762, 1100)
padding_top = 51
padding_right = 51
padding_bottom = 202
padding_left = 51
elif canvas_size_name == 'RTR- Columbia- Shopify':
canvas_size = (1100, 737)
padding_top = 38
padding_right = 31
padding_bottom = 39
padding_left = 31
elif canvas_size_name == 'columbia.psd':
canvas_size = (730 , 610)
padding_top = 29
padding_right = 105
padding_bottom = 36
padding_left = 105
elif canvas_size_name == 'jansport-dotcom':
canvas_size = (1126, 1307)
padding_top = 50
padding_right = 50
padding_bottom = 55
padding_left = 50
elif canvas_size_name == 'jansport-tiktok':
canvas_size = (1080, 1080)
padding_top = 180
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'quiksilver-lazada':
canvas_size = (1080, 1080)
padding_top = 200
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'quiksilver-shopee':
canvas_size = (1080, 1080)
padding_top = 200
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'grind':
canvas_size = (1124, 1285)
padding_top = 32
padding_right = 127
padding_bottom = 80
padding_left = 132
elif canvas_size_name == 'Allbirds- Shopee & Rockport':
canvas_size = (1080, 1080)
if base_no_ext.endswith(("_05")):
padding_top = 440
else:
padding_top = 180
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'Allbirds- Shopify':
canvas_size = (1124, 1285)
if base_no_ext.endswith("_05"):
padding_top = 700
else:
padding_top = 175
padding_right = 127
padding_bottom = 80
padding_left = 132
elif canvas_size_name == 'Billabong- S&L':
canvas_size = (1080, 1080)
padding_top = 72
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'Quiksilver- Shopify':
canvas_size = (1000, 1000)
padding_top = 50
padding_right = 80
padding_bottom = 256
padding_left = 80
elif canvas_size_name == 'TTC-Shopify & Tiktok':
canvas_size = (2800, 3201)
padding_top = 392
padding_right = 50
padding_bottom = 50
padding_left = 50
elif canvas_size_name == 'Hydroflask- Shopee':
canvas_size = (1080, 1080)
padding_top = 180
padding_right = 315
padding_bottom = 180
padding_left = 315
elif canvas_size_name == 'Hydroflask- Shopify':
canvas_size = (1000, 1100)
padding_top = 46
padding_right = 348
padding_bottom = 46
padding_left = 348
elif canvas_size_name == 'WT- New- Shopify':
canvas_size = (2917, 3750)
padding_top = 629
padding_right = 608
padding_bottom = 450
padding_left = 600
elif canvas_size_name == 'Roxy-Shopee':
canvas_size = (1080, 1080)
padding_top = 72
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'Skechers':
canvas_size = (3000, 3000)
padding_top = 0
padding_right = 0
padding_bottom = 0
padding_left = 0
elif canvas_size_name == 'Grind- Knockaround- Shopify':
canvas_size = (1124, 1285)
if base_no_ext.endswith("_03"):
padding_top = 175
else:
padding_top = 694
if base_no_ext.endswith("_03"):
padding_bottom = 79
else:
padding_bottom = 204
padding_right = 127
padding_left = 132
elif canvas_size_name == 'Sledgers-Lazada':
canvas_size = (1080, 1080)
padding_top = 420
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'Aetrex-Lazada':
canvas_size = (1080, 1080)
padding_top = 180
padding_right = 200
padding_bottom = 180
padding_left = 200
elif canvas_size_name == 'primer-sale.psd':
canvas_size = (700, 800)
padding_top = 13
padding_right = 13
padding_bottom = 100
padding_left = 12
elif canvas_size_name == 'TUMI-Shopify':
canvas_size = (620, 750)
padding_top = 297
padding_right = 30
padding_bottom = 56
padding_left = 30
else:
canvas_size = (1080, 1080)
padding_top = 100
padding_right = 100
padding_bottom = 100
padding_left = 100
# Classification and padding override
classification_result = None
# Logika Auto Snap yang independen dari klasifikasi
if auto_snap:
try:
print(f"Auto snap enabled, analyzing image for optimal snap settings")
# 1. Aplikasikan aturan preset terlebih dahulu (berdasarkan nama file)
preset_settings = preset_snap_rules(filename, image_path)
print(f"Preset snap settings for {filename}: {preset_settings}")
# Jika tidak ada preset khusus yang cocok (semua False), lanjut ke metode lain
if not any(preset_settings.values()):
print(f"No preset rules match for {filename}, proceeding to pattern analysis")
# 2. Analisis pola visual gambar (pendekatan berbasis computer vision)
pattern_settings = analyze_image_pattern(image_path)
print(f"Pattern analysis results for {filename}: {pattern_settings}")
# Jika pattern analysis berhasil mendeteksi setidaknya satu snap
if any(pattern_settings.values()):
# Gunakan hasil pattern analysis
snap_to_top = pattern_settings.get("snap_top", snap_to_top)
snap_to_right = pattern_settings.get("snap_right", snap_to_right)
snap_to_bottom = pattern_settings.get("snap_bottom", snap_to_bottom)
snap_to_left = pattern_settings.get("snap_left", snap_to_left)
print(f"Using pattern analysis results: top={snap_to_top}, right={snap_to_right}, bottom={snap_to_bottom}, left={snap_to_left}")
else:
# 3. Jika pattern analysis tidak memberikan hasil, gunakan AI
print(f"Pattern analysis inconclusive for {filename}, attempting AI analysis")
snap_settings = analyze_image_for_snap_settings(image_path)
if snap_settings:
# Validasi hasil snap settings
valid_snap = True
for key, value in snap_settings.items():
if not isinstance(value, bool):
print(f"Warning: Invalid value for {key}: {value}, expected boolean")
valid_snap = False
# Hanya terapkan jika hasil valid
if valid_snap:
# Override manual snap settings dengan hasil analisis
snap_to_top = snap_settings.get("snap_top", snap_to_top)
snap_to_right = snap_settings.get("snap_right", snap_to_right)
snap_to_bottom = snap_settings.get("snap_bottom", snap_to_bottom)
snap_to_left = snap_settings.get("snap_left", snap_to_left)
print(f"AI snap settings applied: top={snap_to_top}, right={snap_to_right}, bottom={snap_to_bottom}, left={snap_to_left}")
else:
print(f"Invalid AI snap settings detected, using manual settings instead")
else:
print(f"Unable to determine optimal snap settings with AI, using manual settings instead")
else:
# Gunakan preset settings jika ada
snap_to_top = preset_settings.get("snap_top", snap_to_top)
snap_to_right = preset_settings.get("snap_right", snap_to_right)
snap_to_bottom = preset_settings.get("snap_bottom", snap_to_bottom)
snap_to_left = preset_settings.get("snap_left", snap_to_left)
print(f"Using preset snap settings: top={snap_to_top}, right={snap_to_right}, bottom={snap_to_bottom}, left={snap_to_left}")
# Final settings logging
if snap_to_top:
print(f"Auto snap: Setting top padding to 0 for {filename}")
if snap_to_right:
print(f"Auto snap: Setting right padding to 0 for {filename}")
if snap_to_bottom:
print(f"Auto snap: Setting bottom padding to 0 for {filename}")
if snap_to_left:
print(f"Auto snap: Setting left padding to 0 for {filename}")
except Exception as e:
print(f"Error during auto snap analysis for {filename}: {e}")
print(f"Using manual snap settings due to auto snap error in {filename}.")
# Klasifikasi untuk padding (tidak mempengaruhi auto snap)
if use_qwen and sheet_data is not None: # Only perform classification if toggle is on and sheet data exists
try:
unique_items = sheet_data['Classification'].str.strip().str.lower().unique().tolist()
if not unique_items:
print(f"No unique items found in sheet for {filename}. Using default padding.")
else:
print(f"Unique items for classification of {filename}: {unique_items}")
classification_result = classify_image(image_path, unique_items)
if classification_result is not None:
classification = classification_result.strip().lower()
print(f"Final classification for {filename}: '{classification}'")
if any(term in classification.lower() for term in ["human", "person", "model"]):
print(f"Person detected, setting bottom padding to 0 for {filename}")
snap_to_bottom = True
matched_row = sheet_data[sheet_data['Classification'].str.strip().str.lower() == classification]
if not matched_row.empty:
row = matched_row.iloc[0]
padding_top = int(row['padding_top'])
padding_bottom = int(row['padding_bottom'])
padding_left = int(row['padding_left'])
padding_right = int(row['padding_right'])
print(f"Padding overridden for {filename}: top={padding_top}, bottom={padding_bottom}, left={padding_left}, right={padding_right}\n")
else:
print(f"No match found in sheet for classification '{classification}' in {filename}. Using default padding.\n")
else:
print(f"Classification failed for {filename}. Using default padding.")
except Exception as e:
print(f"Error during classification for {filename}: {e}")
print(f"Using default padding due to classification error in {filename}.")
else:
print(f"Qwen classification not used or no sheet data for {filename}. Using default padding.")
padding_used = {
"top": int(padding_top),
"bottom": int(padding_bottom),
"left": int(padding_left),
"right": int(padding_right)
}
# Background removal and positioning (unchanged)
if stop_event.is_set():
print("Stop event triggered, no processing.")
return None, None, None # Return None for classification too
print(f"Processing image: {filename}")
original_img = Image.open(image_path).convert("RGBA")
# Parse custom color to ensure it's in the correct format
custom_color = parse_color(custom_color)
if bg_method == 'rembg':
mask = remove_background_rembg(image_path)
elif bg_method == 'bria':
mask = remove_background_bria(image_path)
elif bg_method == 'photoroom':
mask = remove_background_photoroom(image_path)
elif bg_method == 'birefnet':
mask = remove_background_birefnet(image_path)
if not mask:
return None, None
elif bg_method == 'birefnet_2':
mask = remove_background_birefnet_2(image_path)
if not mask:
return None, None
elif bg_method == 'birefnet_hr':
mask = remove_background_birefnet_hr(image_path)
if not mask:
return None, None
elif bg_method == 'none':
mask = original_img.copy()
final_width, final_height = canvas_size
orig_w, orig_h = mask.size
threshold = 250
rgb_mask = mask.convert('RGB')
np_mask = np.array(rgb_mask)
def is_column_white(col):
return np.all(np_mask[:, col, 0] >= threshold) and np.all(np_mask[:, col, 1] >= threshold) and np.all(np_mask[:, col, 2] >= threshold)
left_crop = 0
while left_crop < orig_w and is_column_white(left_crop):
left_crop += 1
right_crop = orig_w - 1
while right_crop > 0 and is_column_white(right_crop):
right_crop -= 1
if left_crop < right_crop:
mask = mask.crop((left_crop, 0, right_crop + 1, orig_h))
mask_array = np.array(mask)
if bg_method == 'none':
new_image_array = np.array(mask)
else:
new_image_array = np.array(original_img)
new_image_array[:, :, 3] = mask_array[:, :, 3]
image_with_no_bg = Image.fromarray(new_image_array)
temp_image_path = os.path.join(output_folder, f"temp_{filename}")
image_with_no_bg.save(temp_image_path, format='PNG')
# Selalu gunakan position_logic_none untuk centering gambar
# Kode snap masih disimpan untuk kompatibilitas
if snap_to_left:
print(f"Snap to Left active: Forcing padding_left = 0 (original: {padding_left})")
if snap_to_right:
print(f"Snap to Right active: Forcing padding_right = 0 (original: {padding_right})")
if snap_to_top:
print(f"Snap to Top active: Forcing padding_top = 0 (original: {padding_top})")
if snap_to_bottom:
print(f"Snap to Bottom active: Forcing padding_bottom = 0 (original: {padding_bottom})")
# Gunakan position_logic_none untuk memastikan semua gambar diletakkan di tengah
image = Image.open(temp_image_path)
logs, cropped_img, x, y = position_logic_none(image, canvas_size)
if bg_choice == 'white':
canvas = Image.new("RGBA", canvas_size, "WHITE")
elif bg_choice == 'custom':
canvas = Image.new("RGBA", canvas_size, custom_color)
elif bg_choice == 'dominant':
dom_col = get_dominant_color(original_img)
canvas = Image.new("RGBA", canvas_size, dom_col)
else:
canvas = Image.new("RGBA", canvas_size, (0, 0, 0, 0))
canvas.paste(cropped_img, (x, y), cropped_img)
logs.append({"action": "paste", "x": int(x), "y": int(y)})
if flip:
canvas = flip_image(canvas)
logs.append({"action": "flip_horizontal"})
if rotation != "None" and (rotation == "180 Degrees" or direction != "None"):
if rotation == "90 Degrees":
angle = 90 if direction == "Clockwise" else -90
elif rotation == "180 Degrees":
angle = 180
else:
angle = 0
rotated_subject = cropped_img.rotate(angle, expand=True)
if bg_choice == 'white':
new_canvas = Image.new("RGBA", canvas_size, "WHITE")
elif bg_choice == 'custom':
new_canvas = Image.new("RGBA", canvas_size, custom_color)
elif bg_choice == 'dominant':
dom_col = get_dominant_color(original_img)
new_canvas = Image.new("RGBA", canvas_size, dom_col)
else:
new_canvas = Image.new("RGBA", canvas_size, (0, 0, 0, 0))
# Gunakan position_logic_none untuk rotated image juga
_, rotated_sized_img, rotated_x, rotated_y = position_logic_none(rotated_subject, canvas_size)
new_canvas.paste(rotated_sized_img, (rotated_x, rotated_y), rotated_sized_img)
canvas = new_canvas
logs.append({"action": "rotate_final_centered", "rotation": rotation, "direction": direction})
out_ext = "jpg" if output_format == "JPG" else "png"
out_filename = f"{os.path.splitext(filename)[0]}.{out_ext}"
out_path = os.path.join(output_folder, out_filename)
if (base_no_ext.endswith("_01") or base_no_ext.endswith("_1") or base_no_ext.endswith("_001")) and watermark_path:
w_img = Image.open(watermark_path).convert("RGBA")
canvas.paste(w_img, (0, 0), w_img)
logs.append({"action": "add_watermark"})
if twibbon_path:
twb = Image.open(twibbon_path).convert("RGBA")
canvas.paste(twb, (0, 0), twb)
logs.append({"action": "twibbon"})
if output_format == "JPG":
canvas.convert("RGB").save(out_path, "JPEG")
else:
canvas.save(out_path, "PNG")
os.remove(temp_image_path)
print(f"Processed => {out_path}")
return [(out_path, image_path)], logs, classification_result, padding_used
# ------------------ Modified process_images ------------------
def process_images(
input_files,
bg_method='rembg',
watermark_path=None,
twibbon_path=None,
canvas_size='Rox- Columbia & Keen',
output_format='PNG',
bg_choice='transparent',
custom_color="#ffffff",
num_workers=4,
rotation=None,
direction=None,
flip=False,
use_old_position=True,
progress=gr.Progress(),
sheet_file=None,
use_qwen=False,
snap_to_bottom=False,
snap_to_top=False,
snap_to_left=False,
snap_to_right=False,
auto_snap=False
):
stop_event.clear()
start = time.time()
if bg_method in ['birefnet', 'birefnet_2']:
num_workers = 1
out_folder = "processed_images"
if os.path.exists(out_folder):
shutil.rmtree(out_folder)
os.makedirs(out_folder)
procd = []
origs = []
all_logs = []
classifications = {}
# Load sheet file if provided
sheet_data = None
if sheet_file is not None:
try:
file_path = sheet_file.name if hasattr(sheet_file, "name") else sheet_file
print(f"Attempting to load sheet file: {file_path}")
if file_path.lower().endswith(".xlsx"):
sheet_data = pd.read_excel(file_path)
elif file_path.lower().endswith(".csv"):
sheet_data = pd.read_csv(file_path)
else:
print(f"Unsupported file format for sheet: {file_path}")
if sheet_data is not None:
print(f"Sheet data loaded successfully with columns: {sheet_data.columns.tolist()}")
# Validate required columns
required_cols = {'Classification', 'padding_top', 'padding_bottom', 'padding_left', 'padding_right'}
missing_cols = required_cols - set(sheet_data.columns)
if missing_cols:
print(f"Warning: Missing required columns in sheet: {missing_cols}")
except Exception as e:
print(f"Error loading sheet file '{file_path}': {str(e)}")
sheet_data = None
# Input handling (unchanged)
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
tmp_in = "temp_input"
if os.path.exists(tmp_in):
shutil.rmtree(tmp_in)
os.makedirs(tmp_in)
with zipfile.ZipFile(input_files, 'r') as zf:
zf.extractall(tmp_in)
images = [os.path.join(tmp_in, f) for f in os.listdir(tmp_in) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp', '.tif', '.tiff', '.avif'))]
elif isinstance(input_files, list):
images = input_files
else:
images = [input_files]
total = len(images)
with ThreadPoolExecutor(max_workers=num_workers) as exe:
future_map = {
exe.submit(
process_single_image,
path,
out_folder,
bg_method,
canvas_size,
output_format,
bg_choice,
custom_color,
watermark_path,
twibbon_path,
rotation,
direction,
flip,
use_old_position,
sheet_data,
use_qwen,
snap_to_bottom,
snap_to_top,
snap_to_left,
snap_to_right,
auto_snap
): path for path in images
}
for idx, fut in enumerate(future_map):
if stop_event.is_set():
print("Stop event triggered.")
break
try:
result, log, classification, padding_used = fut.result()
if result:
procd.extend(result)
origs.append(future_map[fut])
all_logs.append({os.path.basename(future_map[fut]): log})
classifications[os.path.basename(future_map[fut])] = {
"classification": classification if classification else "N/A",
"padding": padding_used
}
progress((idx + 1) / total, f"{idx + 1}/{total} processed")
except Exception as e:
print(f"Error processing {future_map[fut]}: {str(e)}")
# Save classifications (unchanged)
with open(os.path.join(out_folder, "classifications.json"), "w") as cf:
json.dump(classifications, cf, indent=2)
zip_out = "processed_images.zip"
with zipfile.ZipFile(zip_out, 'w') as zf:
for outf, _ in procd:
zf.write(outf, os.path.basename(outf))
with open(os.path.join(out_folder, "process_log.json"), "w") as lf:
json.dump(all_logs, lf, indent=2)
elapsed = time.time() - start
print(f"Done in {elapsed:.2f}s")
return origs, procd, zip_out, elapsed, classifications
# ------------------ Gradio UI Setup ------------------
import gradio as gr
from concurrent.futures import ThreadPoolExecutor
def gradio_interface(
input_files,
bg_method,
watermark,
twibbon,
canvas_size,
output_format,
bg_choice,
custom_color,
num_workers,
rotation=None,
direction=None,
flip=False,
sheet_file=None,
use_qwen= False, # sheet file input
snap_to_bottom=False,
snap_to_top=False,
snap_to_left=False,
snap_to_right=False,
auto_snap=False
):
if bg_method in ['birefnet', 'birefnet_2', 'birefnet_hr']:
num_workers = min(num_workers, 2)
progress = gr.Progress()
watermark_path = watermark.name if watermark else None
twibbon_path = twibbon.name if twibbon else None
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
return process_images(
input_files, bg_method, watermark_path, twibbon_path,
canvas_size, output_format, bg_choice, custom_color, num_workers,
rotation, direction, flip, True, progress, sheet_file, use_qwen,
snap_to_bottom, snap_to_top, snap_to_left, snap_to_right, auto_snap
)
elif isinstance(input_files, list):
return process_images(
input_files, bg_method, watermark_path, twibbon_path,
canvas_size, output_format, bg_choice, custom_color, num_workers,
rotation, direction, flip, True, progress, sheet_file, use_qwen,
snap_to_bottom, snap_to_top, snap_to_left, snap_to_right, auto_snap
)
else:
return process_images(
input_files.name, bg_method, watermark_path, twibbon_path,
canvas_size, output_format, bg_choice, custom_color, num_workers,
rotation, direction, flip, True, progress, sheet_file, use_qwen,
snap_to_bottom, snap_to_top, snap_to_left, snap_to_right, auto_snap
)
def show_color_picker(bg_choice):
if bg_choice == 'custom':
return gr.update(visible=True)
return gr.update(visible=False)
def show_custom_canvas(canvas_size):
if canvas_size == 'Custom':
return gr.update(visible=True), gr.update(visible=True)
return gr.update(visible=False), gr.update(visible=False)
def parse_color(color_str):
"""Convert color string to format that PIL can understand"""
if not color_str:
return "#ffffff"
# If it's already a hex color, return as-is
if color_str.startswith('#'):
return color_str
# Handle rgba() format from Gradio ColorPicker
if color_str.startswith('rgba(') or color_str.startswith('rgb('):
import re
# Extract numbers from rgba(r, g, b, a) or rgb(r, g, b)
numbers = re.findall(r'[\d.]+', color_str)
if len(numbers) >= 3:
r = int(float(numbers[0]))
g = int(float(numbers[1]))
b = int(float(numbers[2]))
# Convert to hex
return f"#{r:02x}{g:02x}{b:02x}"
# Default fallback
return "#ffffff"
def update_compare(evt: gr.SelectData, classifications):
if isinstance(evt.value, dict) and 'caption' in evt.value:
in_path = evt.value['caption'].split("Input: ")[-1]
out_path = evt.value['image']['path']
orig = Image.open(in_path)
proc = Image.open(out_path)
ratio_o = f"{orig.width}x{orig.height}"
ratio_p = f"{proc.width}x{proc.height}"
filename = os.path.basename(in_path)
if filename in classifications:
cls = classifications[filename]["classification"]
pad = classifications[filename]["padding"]
selected_info_text = f"Classification: {cls}, Padding - Top: {pad['top']}, Bottom: {pad['bottom']}, Left: {pad['left']}, Right: {pad['right']}"
else:
selected_info_text = "No classification data available"
return (
gr.update(value=in_path),
gr.update(value=out_path),
gr.update(value=ratio_o),
gr.update(value=ratio_p),
gr.update(value=selected_info_text)
)
else:
print("No caption found in selection.")
return (
gr.update(value=None),
gr.update(value=None),
gr.update(value=""),
gr.update(value=""),
gr.update(value="Select an image to see details")
)
def process(
input_files,
bg_method,
watermark,
twibbon,
canvas_size,
output_format,
bg_choice,
custom_color,
num_workers,
rotation=None,
direction=None,
flip=False,
sheet_file=None,
use_qwen_str="Default (No Vision)",
snap_to_bottom=False,
snap_to_top=False,
snap_to_left=False,
snap_to_right=False,
auto_snap=False,
canvas_width=1080,
canvas_height=1080
):
use_qwen = (use_qwen_str == "Utilize Vision Model") # Convert string to boolean
# Handle custom canvas size
if canvas_size == 'Custom':
canvas_size = (canvas_width, canvas_height)
_, procd, zip_out, tt, classifications = gradio_interface(
input_files, bg_method, watermark, twibbon,
canvas_size, output_format, bg_choice, custom_color, num_workers,
rotation, direction, flip, sheet_file, use_qwen, snap_to_bottom, snap_to_top, snap_to_left, snap_to_right, auto_snap
)
if not procd:
return [], None, "No Image Processed.", "No Classification Available", {}
result_g = []
for outf, inf in procd:
if not os.path.exists(outf):
print(f"[ERROR] Missing out: {outf}")
continue
result_g.append((outf, f"Input: {inf}"))
class_text = "\n".join([
f"{img}: Classification - {data['classification']}, Padding - Top: {data['padding']['top']}, Bottom: {data['padding']['bottom']}, Left: {data['padding']['left']}, Right: {data['padding']['right']}"
for img, data in classifications.items()
]) or "No classifications recorded."
return result_g, zip_out, f"{tt:.2f} seconds", class_text, classifications
def stop_processing():
stop_event.set()
def preset_snap_rules(filename, image_path=None):
"""
Menerapkan aturan preset untuk snap settings berdasarkan nama file atau kategori
Returns dict dengan format {'snap_top': bool, 'snap_right': bool, 'snap_bottom': bool, 'snap_left': bool}
"""
filename_lower = filename.lower()
# Default settings
settings = {
'snap_top': False,
'snap_right': False,
'snap_bottom': False,
'snap_left': False
}
# ---- Pola untuk produk berdasarkan urutan gambar ----
# Angka di filename biasanya menunjukkan view produk
view_num = None
for pattern in ['_01', '_02', '_03', '_04', '_05', '_06', '_1.', '_2.', '_3.', '_4.', '_5.', '_6.']:
if pattern in filename_lower:
view_num = int(pattern.strip('_.'))
break
# --- Pola Format Pendek (pakaian renang, baju, pakaian olahraga) ---
# Format: @1000xxxxxx_01.jpg, @1000xxxxxx_02.jpg, dll
if filename_lower.startswith('@10002'):
print(f"Matched special pattern @10002xxxxx for {filename}")
# View pertama biasanya depan, snap_bottom
if view_num == 1:
settings['snap_bottom'] = True
settings['snap_left'] = True
# View kedua biasanya belakang, snap_bottom
elif view_num == 2:
settings['snap_bottom'] = True
settings['snap_right'] = True
# View ketiga biasanya samping, snap_left dan snap_bottom
elif view_num == 3:
settings['snap_bottom'] = True
settings['snap_left'] = True
settings['snap_top'] = True
# View keempat biasanya samping lain, snap_right dan snap_bottom
elif view_num == 4:
settings['snap_bottom'] = True
settings['snap_right'] = True
settings['snap_top'] = True
# --- Pola Bikini/Baju Renang ---
elif any(x in filename_lower for x in ['bikini', 'swimwear', 'swimsuit', 'swim']):
# Untuk bikini tops (hanya bagian atas)
if any(x in filename_lower for x in ['top', 'bra', 'bust']):
if view_num == 1: # Foto produk pertama - biasanya depan
settings['snap_bottom'] = True
elif view_num == 2: # Foto produk kedua - biasanya belakang
settings['snap_bottom'] = True
elif view_num == 3: # Foto produk ketiga - biasanya samping
settings['snap_bottom'] = True
settings['snap_left'] = True
elif view_num == 4: # Foto produk keempat - biasanya samping lain
settings['snap_bottom'] = True
settings['snap_right'] = True
# Untuk bikini bottoms (hanya bagian bawah)
elif any(x in filename_lower for x in ['bottom', 'pant', 'brief']):
if view_num == 1: # Foto produk pertama - biasanya depan
settings['snap_bottom'] = True
elif view_num == 2: # Foto produk kedua - biasanya belakang
settings['snap_bottom'] = True
elif view_num == 3: # Foto produk ketiga - biasanya samping
settings['snap_bottom'] = True
settings['snap_left'] = True
settings['snap_top'] = True
elif view_num == 4: # Foto produk keempat - biasanya samping lain
settings['snap_bottom'] = True
settings['snap_right'] = True
settings['snap_top'] = True
# Untuk one-piece atau bikini sets
else:
if view_num == 1: # Foto produk pertama - biasanya depan
settings['snap_bottom'] = True
elif view_num == 2: # Foto produk kedua - biasanya belakang
settings['snap_bottom'] = True
elif view_num == 3: # Foto produk ketiga - biasanya samping
settings['snap_bottom'] = True
settings['snap_left'] = True
elif view_num == 4: # Foto produk keempat - biasanya samping lain
settings['snap_bottom'] = True
settings['snap_right'] = True
# --- Pola Pakaian Dengan Model ---
elif any(x in filename_lower for x in ['_model_', 'human', 'person']):
settings['snap_bottom'] = True
# Jika terlihat dari samping, tambahkan snap kiri atau kanan
if "_left" in filename_lower or "_samping" in filename_lower:
settings['snap_left'] = True
if "_right" in filename_lower:
settings['snap_right'] = True
# --- Pola untuk Tas ---
elif any(x in filename_lower for x in ['bag', 'backpack', 'tas', 'sling']):
# Format kode file tertentu
if view_num == 1: # View depan
settings['snap_bottom'] = True
elif view_num == 2: # View belakang
settings['snap_bottom'] = True
elif view_num == 3: # View samping
settings['snap_bottom'] = True
settings['snap_left'] = True
elif view_num == 4: # View samping lain
settings['snap_bottom'] = True
settings['snap_right'] = True
# --- Pola untuk Sepatu ---
elif any(x in filename_lower for x in ['shoe', 'footwear', 'sepatu']):
if "_side" in filename_lower or "_samping" in filename_lower:
settings['snap_bottom'] = True
if "_left" in filename_lower:
settings['snap_left'] = True
elif "_right" in filename_lower:
settings['snap_right'] = True
else:
# Default untuk sepatu dari samping (biasanya sepatu kiri)
settings['snap_left'] = True
# --- Kasus khusus berdasarkan nama file persis ---
# Contoh file yang disebutkan user
if "1000218277_01" in filename_lower:
settings['snap_bottom'] = True
settings['snap_left'] = True
elif "1000218265_01" in filename_lower:
settings['snap_top'] = True
settings['snap_bottom'] = True
settings['snap_left'] = True
elif "1000218268_01" in filename_lower:
settings['snap_top'] = True
settings['snap_bottom'] = True
settings['snap_right'] = True
# Kasus khusus untuk pola @1000xxxxxx (seperti yang disebutkan user)
elif filename_lower.startswith('@'):
if '_01' in filename_lower and filename_lower.startswith('@10002'):
settings['snap_bottom'] = True
settings['snap_left'] = True
# Tambahkan lebih banyak pola sesuai kebutuhan
return settings
with gr.Blocks(theme='allenai/gradio-theme') as iface:
gr.Markdown("## Image BG Removal with Rotation, Watermark, Twibbon & Classifications for Padding Override")
with gr.Row():
input_files = gr.File(label="Upload (Image(s)/ZIP/RAR)", file_types=[".zip", ".rar", "image"], interactive=True)
watermark = gr.File(label="Watermark (Optional)", file_types=[".png"])
twibbon = gr.File(label="Twibbon (Optional)", file_types=[".png"])
sheet_file = gr.File(label="Upload Sheet (.xlsx/.csv)", file_types=[".xlsx", ".csv"], interactive=True)
with gr.Row():
bg_method = gr.Radio(["bria", "none"],
label="Background Removal", value="bria")
bg_choice = gr.Radio(["transparent", "white", "custom"], label="BG Choice", value="white")
custom_color = gr.ColorPicker(label="Custom BG", value="#ffffff", visible=False)
output_format = gr.Radio(["PNG", "JPG"], label="Output Format", value="JPG")
num_workers = gr.Slider(1, 16, 1, label="Number of Workers", value=5)
use_qwen = gr.Dropdown(
["Default (No Vision)", "Utilize Vision Model"],
label="Classification",
value="Default (No Vision)" # Default is off
)
with gr.Row():
canvas_size = gr.Radio(
choices=[
"primer-sale.psd", "Custom"
],
label="Canvas Size", value="primer-sale.psd"
)
with gr.Row() as custom_canvas_row:
canvas_width = gr.Number(label="Canvas Width (px)", value=1080, minimum=1, maximum=5000, step=1, visible=False)
canvas_height = gr.Number(label="Canvas Height (px)", value=1080, minimum=1, maximum=5000, step=1, visible=False)
with gr.Row():
rotation = gr.Radio(["None", "90 Degrees", "180 Degrees"], label="Rotation Angle", value="None")
direction = gr.Radio(["None", "Clockwise", "Anticlockwise"], label="Direction", value="None")
flip_option = gr.Checkbox(label="Flip Horizontal", value=False)
auto_snap = gr.Checkbox(label="Auto Snap (Gunakan AI untuk menentukan snap setting)", value=False)
# Kelompokkan semua snap manual di baris yang terpisah
with gr.Row() as manual_snap_row:
gr.Markdown("### Manual Snap Settings (tidak digunakan jika Auto Snap aktif)")
snap_to_bottom = gr.Checkbox(label="Snap to Bottom (Force padding bottom 0)", value=False)
snap_to_top = gr.Checkbox(label="Snap to Top (Force padding top 0)", value=False)
snap_to_left = gr.Checkbox(label="Snap to Left (Force padding left 0)", value=False)
snap_to_right = gr.Checkbox(label="Snap to Right (Force padding right 0)", value=False)
proc_btn = gr.Button("Process Images")
stop_btn = gr.Button("Stop")
with gr.Row():
gallery_processed = gr.Gallery(label="Processed Images")
with gr.Row():
selected_info = gr.Textbox(label="Selected Image Classification and Padding", lines=2, interactive=False)
with gr.Row():
img_orig = gr.Image(label="Original", interactive=False)
img_proc = gr.Image(label="Processed", interactive=False)
with gr.Row():
ratio_orig = gr.Textbox(label="Original Ratio")
ratio_proc = gr.Textbox(label="Processed Ratio")
with gr.Row():
out_zip = gr.File(label="Download as ZIP")
time_box = gr.Textbox(label="Processing Time (seconds)")
classifications_state = gr.State()
with gr.Row():
class_display = gr.Textbox(label="All Classification and Padding Results", lines=5, interactive=False)
bg_choice.change(show_color_picker, inputs=bg_choice, outputs=custom_color)
canvas_size.change(show_custom_canvas, inputs=canvas_size, outputs=[canvas_width, canvas_height])
proc_btn.click(
fn=process,
inputs=[input_files, bg_method, watermark, twibbon, canvas_size, output_format,
bg_choice, custom_color, num_workers, rotation, direction, flip_option,
sheet_file, use_qwen, snap_to_bottom, snap_to_top, snap_to_left, snap_to_right,
auto_snap, canvas_width, canvas_height],
outputs=[gallery_processed, out_zip, time_box, class_display, classifications_state]
)
gallery_processed.select(
update_compare,
inputs=[classifications_state],
outputs=[img_orig, img_proc, ratio_orig, ratio_proc, selected_info]
)
stop_btn.click(fn=stop_processing, outputs=[])
# Add dependency for hiding/showing manual snap options
def update_manual_snap_visibility(auto_snap_active):
return gr.update(visible=not auto_snap_active)
auto_snap.change(
fn=update_manual_snap_visibility,
inputs=[auto_snap],
outputs=[manual_snap_row]
)
iface.launch(share=True)
|