Spaces:
Runtime error
Runtime error
app file
Browse files
app.py
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Tue Jan 12 08:28:35 2021
|
| 4 |
+
|
| 5 |
+
@author: rejid4996
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
# packages
|
| 9 |
+
import os
|
| 10 |
+
import re
|
| 11 |
+
import time
|
| 12 |
+
import base64
|
| 13 |
+
import pickle
|
| 14 |
+
import numpy as np
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import streamlit as st
|
| 17 |
+
from io import BytesIO
|
| 18 |
+
import preprocessor as p
|
| 19 |
+
from textblob.classifiers import NaiveBayesClassifier
|
| 20 |
+
|
| 21 |
+
# custum function to clean the dataset (combining tweet_preprocessor and reguar expression)
|
| 22 |
+
def clean_tweets(df):
|
| 23 |
+
#set up punctuations we want to be replaced
|
| 24 |
+
REPLACE_NO_SPACE = re.compile("(\.)|(\;)|(\:)|(\!)|(\')|(\?)|(\,)|(\")|(\|)|(\()|(\))|(\[)|(\])|(\%)|(\$)|(\>)|(\<)|(\{)|(\})")
|
| 25 |
+
REPLACE_WITH_SPACE = re.compile("(<br\s/><br\s/?)|(-)|(/)|(:).")
|
| 26 |
+
tempArr = []
|
| 27 |
+
for line in df:
|
| 28 |
+
# send to tweet_processor
|
| 29 |
+
tmpL = p.clean(line)
|
| 30 |
+
# remove puctuation
|
| 31 |
+
tmpL = REPLACE_NO_SPACE.sub("", tmpL.lower()) # convert all tweets to lower cases
|
| 32 |
+
tmpL = REPLACE_WITH_SPACE.sub(" ", tmpL)
|
| 33 |
+
tempArr.append(tmpL)
|
| 34 |
+
return tempArr
|
| 35 |
+
|
| 36 |
+
def to_excel(df):
|
| 37 |
+
output = BytesIO()
|
| 38 |
+
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
| 39 |
+
df.to_excel(writer, sheet_name='Sheet1')
|
| 40 |
+
writer.save()
|
| 41 |
+
processed_data = output.getvalue()
|
| 42 |
+
return processed_data
|
| 43 |
+
|
| 44 |
+
def get_table_download_link(df):
|
| 45 |
+
"""Generates a link allowing the data in a given panda dataframe to be downloaded
|
| 46 |
+
in: dataframe
|
| 47 |
+
out: href string
|
| 48 |
+
"""
|
| 49 |
+
val = to_excel(df)
|
| 50 |
+
b64 = base64.b64encode(val) # val looks like b'...'
|
| 51 |
+
return f'<a href="data:application/octet-stream;base64,{b64.decode()}" download="classified_data.xlsx">Download file</a>' # decode b'abc' => abc
|
| 52 |
+
|
| 53 |
+
def download_model(model):
|
| 54 |
+
output_model = pickle.dumps(model)
|
| 55 |
+
b64 = base64.b64encode(output_model).decode()
|
| 56 |
+
href = f'<a href="data:file/output_model;base64,{b64}" download="myClassifier.pkl">Download Model .pkl File</a>'
|
| 57 |
+
st.markdown(href, unsafe_allow_html=True)
|
| 58 |
+
|
| 59 |
+
def main():
|
| 60 |
+
"""NLP App with Streamlit"""
|
| 61 |
+
|
| 62 |
+
from PIL import Image
|
| 63 |
+
|
| 64 |
+
wallpaper = Image.open('D 4 Data.jpg')
|
| 65 |
+
wallpaper = wallpaper.resize((700,350))
|
| 66 |
+
|
| 67 |
+
st.sidebar.title("Text Classification App 1.0")
|
| 68 |
+
st.sidebar.success("Please reach out to https://www.linkedin.com/in/deepak-john-reji/ for more queries")
|
| 69 |
+
st.sidebar.subheader("Classifier using Textblob ")
|
| 70 |
+
|
| 71 |
+
st.info("For more contents subscribe to my Youtube Channel https://www.youtube.com/channel/UCgOwsx5injeaB_TKGsVD5GQ")
|
| 72 |
+
st.image(wallpaper)
|
| 73 |
+
|
| 74 |
+
options = ("Train the model", "Test the model", "Predict for a new data")
|
| 75 |
+
a = st.sidebar.empty()
|
| 76 |
+
value = a.radio("what do you wanna do", options, 0)
|
| 77 |
+
|
| 78 |
+
if value == "Train the model":
|
| 79 |
+
|
| 80 |
+
uploaded_file = st.file_uploader("*Upload your file, make sure you have a column for text that has to be classified and the label", type="xlsx")
|
| 81 |
+
|
| 82 |
+
if uploaded_file:
|
| 83 |
+
|
| 84 |
+
df = pd.read_excel(uploaded_file)
|
| 85 |
+
|
| 86 |
+
option1 = st.sidebar.selectbox(
|
| 87 |
+
'Select the text column',
|
| 88 |
+
tuple(df.columns.to_list()))
|
| 89 |
+
|
| 90 |
+
option2 = st.sidebar.selectbox(
|
| 91 |
+
'Select the label column',
|
| 92 |
+
tuple(df.columns.to_list()))
|
| 93 |
+
|
| 94 |
+
# clean training data
|
| 95 |
+
df[option1] = clean_tweets(df[option1])
|
| 96 |
+
|
| 97 |
+
# Enter the label names
|
| 98 |
+
label1 = st.sidebar.text_input("Enter the label for '0' value")
|
| 99 |
+
label2 = st.sidebar.text_input("Enter the label for '1' value")
|
| 100 |
+
|
| 101 |
+
# replace value with pos and neg
|
| 102 |
+
df[option2] = df[option2].map({0:label1, 1:label2})
|
| 103 |
+
|
| 104 |
+
gcr_config = st.sidebar.slider(label="choose the training size, longer the size longer the training time",
|
| 105 |
+
min_value=100,
|
| 106 |
+
max_value=10000,
|
| 107 |
+
step=10)
|
| 108 |
+
|
| 109 |
+
#subsetting based on classes
|
| 110 |
+
df1 = df[df[option2] == label1][0:int(gcr_config/2)]
|
| 111 |
+
df2 = df[df[option2] == label2][0:int(gcr_config/2)]
|
| 112 |
+
|
| 113 |
+
df_new = pd.concat([df1, df2]).reset_index(drop=True)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# convert in the format
|
| 117 |
+
training_list = []
|
| 118 |
+
for i in df_new.index:
|
| 119 |
+
value = (df_new[option1][i], df_new[option2][i])
|
| 120 |
+
training_list.append(value)
|
| 121 |
+
|
| 122 |
+
# run classification
|
| 123 |
+
run_button = st.sidebar.button(label='Start Training')
|
| 124 |
+
|
| 125 |
+
if run_button:
|
| 126 |
+
|
| 127 |
+
# Train using Naive Bayes
|
| 128 |
+
start = time.time() # start time
|
| 129 |
+
cl = NaiveBayesClassifier(training_list[0:gcr_config])
|
| 130 |
+
|
| 131 |
+
st.success("Congratulations!!! Model trained successfully with an accuracy of "+str(cl.accuracy(training_list) * 100) + str("%"))
|
| 132 |
+
st.write("Total Time taken for Training :" + str((time.time()-start)/60) + " minutes")
|
| 133 |
+
|
| 134 |
+
# download the model
|
| 135 |
+
download_model(cl)
|
| 136 |
+
|
| 137 |
+
# testing the model
|
| 138 |
+
if value == "Test the model":
|
| 139 |
+
uploaded_file = st.file_uploader("*Upload your model file, make sure its in the right format (currently pickle file)", type="pkl")
|
| 140 |
+
if uploaded_file:
|
| 141 |
+
model = pickle.load(uploaded_file)
|
| 142 |
+
st.success("Congratulations!!! Model upload successfull")
|
| 143 |
+
|
| 144 |
+
if model:
|
| 145 |
+
value1 = ""
|
| 146 |
+
test_sentence = st.text_input("Enter the testing sentence")
|
| 147 |
+
|
| 148 |
+
#predict_button = st.button(label='Predict')
|
| 149 |
+
|
| 150 |
+
if test_sentence:
|
| 151 |
+
st.info("Model Prediction is : " + model.classify(test_sentence))
|
| 152 |
+
|
| 153 |
+
"\n"
|
| 154 |
+
st.write("### π² Help me train the model better. How is the prediction?")
|
| 155 |
+
"\n"
|
| 156 |
+
correct = st.checkbox("Correct")
|
| 157 |
+
wrong = st.checkbox("Incorrect")
|
| 158 |
+
|
| 159 |
+
if correct:
|
| 160 |
+
st.success("Great!!! I am happy for you")
|
| 161 |
+
st.write("If you would like please try out for more examples")
|
| 162 |
+
|
| 163 |
+
if wrong:
|
| 164 |
+
st.write("### π² Dont worry!!! Lets add this new data to the model and retrain. ")
|
| 165 |
+
label = st.text_input("Could you write the actual label, please note the label name should be the same while you trained")
|
| 166 |
+
#retrain_button = st.button(label='Retrain')
|
| 167 |
+
if label:
|
| 168 |
+
new_data = [(test_sentence, label)]
|
| 169 |
+
model.update(new_data)
|
| 170 |
+
|
| 171 |
+
st.write("### π² Lets classify and see whether model had learned from this example ")
|
| 172 |
+
|
| 173 |
+
st.write("Sentence : " + test_sentence)
|
| 174 |
+
st.info("New Model Prediction is : " + model.classify(test_sentence))
|
| 175 |
+
|
| 176 |
+
sec_wrong3 = st.checkbox("It's Correct")
|
| 177 |
+
sec_wrong1 = st.checkbox("Still Incorrect")
|
| 178 |
+
sec_wrong2 = st.checkbox("I will go ahead and change the data in excel and retrain the model")
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
if sec_wrong1:
|
| 182 |
+
st.write("### π² Lets try training with some sentences of this sort")
|
| 183 |
+
new_sentence = st.text_input("Enter the training sentence")
|
| 184 |
+
new_label = st.text_input("Enter the training label")
|
| 185 |
+
|
| 186 |
+
st.write("Lets try one last time ")
|
| 187 |
+
retrain_button1 = st.button(label='Retrain again!')
|
| 188 |
+
|
| 189 |
+
if retrain_button1:
|
| 190 |
+
new_data1 = [(new_sentence, new_label)]
|
| 191 |
+
model.update(new_data1)
|
| 192 |
+
|
| 193 |
+
st.write("Sentence : " + new_sentence)
|
| 194 |
+
st.info("New Model Prediction is : " + model.classify(new_sentence))
|
| 195 |
+
|
| 196 |
+
# download the model
|
| 197 |
+
download_model(model)
|
| 198 |
+
|
| 199 |
+
if sec_wrong2:
|
| 200 |
+
st.info("Great!!! Fingers Crossed")
|
| 201 |
+
st.write("### π² Please return to your excel file and add more sentences and Train the model again")
|
| 202 |
+
|
| 203 |
+
if sec_wrong3:
|
| 204 |
+
st.info("Wow!!! Awesome")
|
| 205 |
+
st.write("Now lets download the updated model")
|
| 206 |
+
# download the model
|
| 207 |
+
download_model(model)
|
| 208 |
+
|
| 209 |
+
# predicting for new data
|
| 210 |
+
if value == "Predict for a new data":
|
| 211 |
+
uploaded_file3 = st.file_uploader("*Upload your model file, make sure its in the right format (currently pickle file)", type="pkl")
|
| 212 |
+
if uploaded_file3:
|
| 213 |
+
model1 = pickle.load(uploaded_file3)
|
| 214 |
+
st.success("Congratulations!!! Model uploaded successfully")
|
| 215 |
+
|
| 216 |
+
uploaded_file1 = st.file_uploader("*Upload your new data which you have to predict", type="xlsx")
|
| 217 |
+
if uploaded_file1:
|
| 218 |
+
st.success("Congratulations!!! Data uploaded successfully")
|
| 219 |
+
|
| 220 |
+
df_valid = pd.read_excel(uploaded_file1)
|
| 221 |
+
|
| 222 |
+
option3 = st.selectbox(
|
| 223 |
+
'Select the text column which needs to be predicted',
|
| 224 |
+
tuple(df_valid.columns.to_list()))
|
| 225 |
+
|
| 226 |
+
predict_button1 = st.button(label='Predict for new data')
|
| 227 |
+
|
| 228 |
+
if predict_button1:
|
| 229 |
+
start1 = time.time() # start time
|
| 230 |
+
df_valid['predicted'] = df_valid[option3].apply(lambda tweet: model1.classify(tweet))
|
| 231 |
+
|
| 232 |
+
st.write("### π² Prediction Successfull !!!")
|
| 233 |
+
|
| 234 |
+
st.write("Total No. of sentences: "+ str(len(df_valid)))
|
| 235 |
+
st.write("Total Time taken for Prediction :" + str((time.time()-start1)/60) + " minutes")
|
| 236 |
+
|
| 237 |
+
st.markdown(get_table_download_link(df_valid), unsafe_allow_html=True)
|
| 238 |
+
|
| 239 |
+
if __name__ == "__main__":
|
| 240 |
+
main()
|