import cv2 import numpy as np import torch from ultralytics import YOLO import gradio as gr from scipy.interpolate import interp1d import uuid import os try: from OpenGL.GL import * from OpenGL.GLU import * from pygame import display, event, QUIT HAS_OPENGL = True except ImportError: print("Warning: PyOpenGL or Pygame not found. 3D visualization will be disabled. Install with 'pip install PyOpenGL PyOpenGL_accelerate pygame'.") HAS_OPENGL = False # Load the trained YOLOv8n model model = YOLO("best.pt") # Constants STUMPS_WIDTH = 0.2286 # meters FRAME_RATE = 20 SLOW_MOTION_FACTOR = 2 CONF_THRESHOLD = 0.3 PITCH_ZONE_Y = 0.8 IMPACT_ZONE_Y = 0.7 IMPACT_DELTA_Y = 20 STUMPS_HEIGHT = 0.711 # meters PITCH_LENGTH = 20.12 # meters (22 yards) def process_video(video_path): if not os.path.exists(video_path): return [], [], [], "Error: Video file not found" cap = cv2.VideoCapture(video_path) frames = [] ball_positions = [] detection_frames = [] debug_log = [] frame_count = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break frames.append(frame.copy()) frame = cv2.convertScaleAbs(frame, alpha=1.2, beta=10) results = model.predict(frame, conf=CONF_THRESHOLD) detections = [det for det in results[0].boxes if det.cls == 0] if len(detections) == 1: x1, y1, x2, y2 = detections[0].xyxy[0].cpu().numpy() ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2]) detection_frames.append(len(frames) - 1) cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2) frames[-1] = frame debug_log.append(f"Frame {frame_count}: {len(detections)} ball detections") frame_count += 1 cap.release() if not ball_positions: debug_log.append("No valid single-ball detections in any frame") else: debug_log.append(f"Total valid single-ball detections: {len(ball_positions)}") return frames, ball_positions, detection_frames, "\n".join(debug_log) def estimate_trajectory_3d(ball_positions, detection_frames, frames): if len(ball_positions) < 2: return None, None, None, None, None, None, "Error: Fewer than 2 valid single-ball detections" frame_height, frame_width = frames[0].shape[:2] x_coords = np.array([pos[0] for pos in ball_positions]) / frame_width * PITCH_LENGTH y_coords = np.array([frame_height - pos[1] for pos in ball_positions]) / frame_height * STUMPS_HEIGHT * 2 z_coords = np.zeros_like(x_coords) # Placeholder for depth times = np.array([i / FRAME_RATE for i in range(len(ball_positions))]) pitch_idx = 0 for i, y in enumerate(y_coords): if y < STUMPS_HEIGHT: pitch_idx = i break pitch_point = (x_coords[pitch_idx], y_coords[pitch_idx], 0) pitch_frame = detection_frames[pitch_idx] impact_idx = None for i in range(1, len(y_coords)): if (y_coords[i] > STUMPS_HEIGHT and abs(y_coords[i] - y_coords[i-1]) > IMPACT_DELTA_Y * STUMPS_HEIGHT / frame_height): impact_idx = i break if impact_idx is None: impact_idx = len(y_coords) - 1 impact_point = (x_coords[impact_idx], y_coords[impact_idx], 0) impact_frame = detection_frames[impact_idx] # Use cubic interpolation to avoid derivative mismatch try: fx = interp1d(times[:impact_idx + 1], x_coords[:impact_idx + 1], kind='cubic', fill_value="extrapolate") fy = interp1d(times[:impact_idx + 1], y_coords[:impact_idx + 1], kind='cubic', fill_value="extrapolate") fz = interp1d(times[:impact_idx + 1], z_coords[:impact_idx + 1], kind='cubic', fill_value="extrapolate") except ValueError as e: # Fallback to linear if cubic fails (e.g., too few points) fx = interp1d(times[:impact_idx + 1], x_coords[:impact_idx + 1], kind='linear', fill_value="extrapolate") fy = interp1d(times[:impact_idx + 1], y_coords[:impact_idx + 1], kind='linear', fill_value="extrapolate") fz = interp1d(times[:impact_idx + 1], z_coords[:impact_idx + 1], kind='linear', fill_value="extrapolate") print(f"Warning: Cubic interpolation failed, falling back to linear. Error: {str(e)}") t_full = np.linspace(times[0], times[impact_idx] + 0.5, 50) full_trajectory = list(zip(fx(t_full), fy(t_full), fz(t_full))) vis_trajectory = list(zip(x_coords, y_coords, z_coords))[:impact_idx + 1] return full_trajectory, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, "Trajectory estimated" def lbw_decision(ball_positions, full_trajectory, frames, pitch_point, impact_point): if not frames or not full_trajectory: return "Error: No data", None, None, None frame_height, frame_width = frames[0].shape[:2] stumps_x = PITCH_LENGTH / 2 stumps_y = 0 stumps_width = STUMPS_WIDTH pitch_x, pitch_y, _ = pitch_point impact_x, impact_y, _ = impact_point in_line_threshold = stumps_width / 2 if abs(pitch_x - stumps_x) > in_line_threshold: return f"Not Out (Pitched outside line at x: {pitch_x:.1f})", full_trajectory, pitch_point, impact_point if abs(impact_x - stumps_x) > in_line_threshold or impact_y < stumps_y: return f"Not Out (Impact outside line at x: {impact_x:.1f})", full_trajectory, pitch_point, impact_point hit_stumps = False for x, y, z in full_trajectory: if (abs(x - stumps_x) < in_line_threshold and abs(y - stumps_y) < STUMPS_HEIGHT / 2): hit_stumps = True break if hit_stumps: if abs(x - stumps_x) < in_line_threshold * 0.1: return f"Umpire's Call - Not Out", full_trajectory, pitch_point, impact_point return f"Out (Ball hits stumps)", full_trajectory, pitch_point, impact_point return f"Not Out (Missing stumps)", full_trajectory, pitch_point, impact_point def generate_slow_motion(frames, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, detection_frames, output_path, decision, frame_width, frame_height): if not frames: return None fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frame_width, frame_height)) trajectory_points = np.array([[p[0] * frame_width / PITCH_LENGTH, frame_height - (p[1] * frame_height / (STUMPS_HEIGHT * 2))] for p in vis_trajectory], dtype=np.int32).reshape((-1, 1, 2)) for i, frame in enumerate(frames): # Draw stumps outline (scaled back to pixel coordinates) stumps_x = frame_width / 2 stumps_y = frame_height * 0.8 stumps_width_pixels = frame_width * (STUMPS_WIDTH / PITCH_LENGTH) stumps_height_pixels = frame_height * (STUMPS_HEIGHT / (STUMPS_HEIGHT * 2)) cv2.line(frame, (int(stumps_x - stumps_width_pixels / 2), int(stumps_y)), (int(stumps_x + stumps_width_pixels / 2), int(stumps_y)), (255, 255, 255), 2) cv2.line(frame, (int(stumps_x - stumps_width_pixels / 2), int(stumps_y - stumps_height_pixels)), (int(stumps_x - stumps_width_pixels / 2), int(stumps_y)), (255, 255, 255), 2) cv2.line(frame, (int(stumps_x + stumps_width_pixels / 2), int(stumps_y - stumps_height_pixels)), (int(stumps_x + stumps_width_pixels / 2), int(stumps_y)), (255, 255, 255), 2) # Draw crease line cv2.line(frame, (int(stumps_x - stumps_width_pixels / 2), int(stumps_y)), (int(stumps_x + stumps_width_pixels / 2), int(stumps_y)), (255, 255, 0), 2) if i in detection_frames and trajectory_points.size > 0: idx = detection_frames.index(i) + 1 if idx <= len(trajectory_points): cv2.polylines(frame, [trajectory_points[:idx]], False, (0, 0, 255), 2) # Blue trajectory if pitch_point and i == pitch_frame: x = pitch_point[0] * frame_width / PITCH_LENGTH y = frame_height - (pitch_point[1] * frame_height / (STUMPS_HEIGHT * 2)) cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 0), -1) # Green for pitching cv2.putText(frame, "Pitching", (int(x) + 10, int(y) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) if impact_point and i == impact_frame: x = impact_point[0] * frame_width / PITCH_LENGTH y = frame_height - (impact_point[1] * frame_height / (STUMPS_HEIGHT * 2)) cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1) # Red for impact cv2.putText(frame, "Impact", (int(x) + 10, int(y) + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1) if impact_point and i == impact_frame and "Out" in decision: cv2.putText(frame, "Wickets", (int(stumps_x) - 50, int(stumps_y) - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 165, 255), 1) # Orange for wickets for _ in range(SLOW_MOTION_FACTOR): out.write(frame) out.release() return output_path def draw_3d_scene(trajectory, pitch_point, impact_point, decision): if not HAS_OPENGL: return glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glBegin(GL_LINES) for i in range(len(trajectory) - 1): glColor3f(0, 0, 1) # Blue trajectory glVertex3f(trajectory[i][0], trajectory[i][1], trajectory[i][2]) glVertex3f(trajectory[i + 1][0], trajectory[i + 1][1], trajectory[i + 1][2]) glEnd() glColor3f(0, 1, 0) # Green pitch glBegin(GL_QUADS) glVertex3f(0, 0, 0) glVertex3f(PITCH_LENGTH, 0, 0) glVertex3f(PITCH_LENGTH, 0, -1) glVertex3f(0, 0, -1) glEnd() glColor3f(1, 1, 1) # White stumps glBegin(GL_LINES) glVertex3f(PITCH_LENGTH / 2 - STUMPS_WIDTH / 2, 0, 0) glVertex3f(PITCH_LENGTH / 2 - STUMPS_WIDTH / 2, STUMPS_HEIGHT, 0) glVertex3f(PITCH_LENGTH / 2 + STUMPS_WIDTH / 2, 0, 0) glVertex3f(PITCH_LENGTH / 2 + STUMPS_WIDTH / 2, STUMPS_HEIGHT, 0) glEnd() if pitch_point: glColor3f(0, 1, 0) # Green glPushMatrix() glTranslatef(pitch_point[0], pitch_point[1], pitch_point[2]) glutSolidSphere(0.1, 20, 20) glPopMatrix() if impact_point: glColor3f(1, 0, 0) # Red glPushMatrix() glTranslatef(impact_point[0], impact_point[1], impact_point[2]) glutSolidSphere(0.1, 20, 20) glPopMatrix() if "Out" in decision: glColor3f(1, 0.65, 0) # Orange glRasterPos3f(PITCH_LENGTH / 2, STUMPS_HEIGHT, 0) for char in "Wickets": glutBitmapCharacter(GLUT_BITMAP_HELVETICA_12, ord(char)) display.flip() def init_3d_window(width, height): if not HAS_OPENGL: return pygame.init() display.set_mode((width, height), DOUBLEBUF | OPENGL) gluPerspective(45, (width / height), 0.1, 50.0) glTranslatef(0.0, -5.0, -30) glEnable(GL_DEPTH_TEST) def drs_review(video): frames, ball_positions, detection_frames, debug_log = process_video(video) if not frames: return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None full_trajectory, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, trajectory_log = estimate_trajectory_3d(ball_positions, detection_frames, frames) decision, full_trajectory, pitch_point, impact_point = lbw_decision(ball_positions, full_trajectory, frames, pitch_point, impact_point) frame_height, frame_width = frames[0].shape[:2] output_path = f"output_{uuid.uuid4()}.mp4" slow_motion_path = generate_slow_motion(frames, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, detection_frames, output_path, decision, frame_width, frame_height) if HAS_OPENGL: init_3d_window(800, 600) from OpenGL.GLUT import glutInit, glutSolidSphere glutInit() for _ in range(100): # Limited frames for demo draw_3d_scene(full_trajectory, pitch_point, impact_point, decision) event.pump() debug_output = f"{debug_log}\n{trajectory_log}" return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path # Gradio interface iface = gr.Interface( fn=drs_review, inputs=gr.Video(label="Upload Video Clip"), outputs=[ gr.Textbox(label="DRS Decision and Debug Log"), gr.Video(label="Slow-Motion Replay with 2D Annotations") ], title="AI-Powered 3D DRS for LBW", description="Upload a video clip for 3D DRS analysis with pitching (green), impact (red), and wickets (orange) visualization, and 2D annotated video output." ) if __name__ == "__main__": iface.launch()