Spaces:
Runtime error
Runtime error
File size: 1,538 Bytes
fa9b186 c0c0bc8 fa9b186 86a21c2 fa9b186 2827bbc fa9b186 2827bbc fa9b186 c0c0bc8 1276556 c0c0bc8 030f87e c0c0bc8 2827bbc 030f87e 86a21c2 c0c0bc8 66ffdb0 c0c0bc8 f27cf49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import gradio as gr
from PIL import Image
# Define the neural network model
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 28 * 28) # Flatten the input
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return torch.log_softmax(x, dim=1)
# Load the trained model
model = Net()
try:
model.load_state_dict(torch.load('mnist_model.pth', map_location=torch.device('cpu')))
except Exception as e:
print(f"Error loading model: {e}")
model.eval()
# Define the transform to preprocess the input image
transform = transforms.Compose([
transforms.Grayscale(num_output_channels=1),
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# Define the prediction function
def predict(image):
image = transform(image).unsqueeze(0) # Add batch dimension
with torch.no_grad():
output = model(image)
prediction = torch.argmax(output, dim=1).item()
return prediction
# Create the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(shape=(28, 28), image_mode='L', invert_colors=False),
outputs="label",
live=True
)
# Launch the Gradio interface
if __name__ == "__main__":
iface.launch()
|