import torch import torch.nn as nn import torchvision.transforms as transforms import gradio as gr from PIL import Image # Define the neural network model class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28 * 28, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 10) def forward(self, x): x = x.view(-1, 28 * 28) # Flatten the input x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return torch.log_softmax(x, dim=1) # Load the trained model model = Net() try: model.load_state_dict(torch.load('mnist_model.pth', map_location=torch.device('cpu'))) except Exception as e: print(f"Error loading model: {e}") model.eval() # Define the transform to preprocess the input image transform = transforms.Compose([ transforms.Grayscale(num_output_channels=1), transforms.Resize((28, 28)), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) # Define the prediction function def predict(image): image = transform(image).unsqueeze(0) # Add batch dimension with torch.no_grad(): output = model(image) prediction = torch.argmax(output, dim=1).item() return prediction # Create the Gradio interface iface = gr.Interface( fn=predict, inputs=gr.Image(shape=(28, 28), image_mode='L', invert_colors=False), outputs="label", live=True ) # Launch the Gradio interface if __name__ == "__main__": iface.launch()