Spaces:
Sleeping
Sleeping
import cv2 | |
import cvzone | |
import numpy as np | |
def batsman_detect(img, rgb_lower, rgb_upper, canny_threshold1=100, canny_threshold2=200): | |
""" | |
Detects a batsman in an image frame using color-based filtering and edge detection. | |
Args: | |
img: The input image frame (BGR format). | |
rgb_lower: NumPy array defining the lower bound of the RGB color range for batsman. e.g., np.array([112, 0, 181]) | |
rgb_upper: NumPy array defining the upper bound of the RGB color range for batsman. e.g., np.array([255, 255, 255]) | |
canny_threshold1: Lower threshold for Canny edge detection. | |
canny_threshold2: Upper threshold for Canny edge detection. | |
Returns: | |
contours: A list of contours detected in the color-masked and edge-processed image, | |
presumed to be the batsman. Returns an empty list if no contours are found. | |
""" | |
img_gray_rgb = cv2.cvtColor( | |
img, cv2.COLOR_BGR2RGB | |
) # Convert to RGB for color masking | |
img_blur = cv2.GaussianBlur( | |
img_gray_rgb, (5, 5), 1 | |
) # Gaussian blur for noise reduction | |
# Edge Detection (Canny) - you can tune canny_threshold1 and canny_threshold2 | |
img_canny = cv2.Canny(img_blur, canny_threshold1, canny_threshold2) | |
# Morphological Operations (Opening - Dilation followed by Erosion) - Consider experimenting with Closing (Erosion then Dilation) | |
kernel = np.ones((5, 5)) | |
img_dilate = cv2.dilate(img_canny, kernel, iterations=2) # Dilate to thicken edges | |
img_threshold = cv2.erode( | |
img_dilate, kernel, iterations=2 | |
) # Erode to remove noise and thin edges (Opening) | |
# Color Masking in RGB color space | |
mask = cv2.inRange(img_gray_rgb, rgb_lower, rgb_upper) | |
# Find contours in the color mask | |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
return contours | |
if __name__ == "__main__": | |
cap = cv2.VideoCapture(r"lbw.mp4") # Adjust path if needed | |
# Default RGB color range - you should tune these using the trackbars below | |
default_rgb_lower = np.array([112, 0, 181]) | |
default_rgb_upper = np.array([255, 255, 255]) | |
# Canny thresholds - you can also tune these via trackbars if needed | |
default_canny_threshold1 = 100 | |
default_canny_threshold2 = 200 | |
def empty(a): # Dummy function for trackbar | |
pass | |
# Create a window for trackbars to tune RGB color range and Canny thresholds | |
cv2.namedWindow("Trackbars") | |
cv2.resizeWindow( | |
"Trackbars", 640, 480 | |
) # Increased window height to fit more trackbars | |
cv2.createTrackbar("R Min", "Trackbars", default_rgb_lower[0], 255, empty) | |
cv2.createTrackbar("G Min", "Trackbars", default_rgb_lower[1], 255, empty) | |
cv2.createTrackbar("B Min", "Trackbars", default_rgb_lower[2], 255, empty) | |
cv2.createTrackbar("R Max", "Trackbars", default_rgb_upper[0], 255, empty) | |
cv2.createTrackbar("G Max", "Trackbars", default_rgb_upper[1], 255, empty) | |
cv2.createTrackbar("B Max", "Trackbars", default_rgb_upper[2], 255, empty) | |
cv2.createTrackbar( | |
"Canny Thresh 1", "Trackbars", default_canny_threshold1, 255, empty | |
) # Canny threshold 1 | |
cv2.createTrackbar( | |
"Canny Thresh 2", "Trackbars", default_canny_threshold2, 255, empty | |
) # Canny threshold 2 | |
while True: | |
frame, img = cap.read() | |
if not frame: | |
break | |
# Get trackbar positions for RGB color range | |
rgb_lower = np.array( | |
[ | |
cv2.getTrackbarPos("R Min", "Trackbars"), | |
cv2.getTrackbarPos("G Min", "Trackbars"), | |
cv2.getTrackbarPos("B Min", "Trackbars"), | |
] | |
) | |
rgb_upper = np.array( | |
[ | |
cv2.getTrackbarPos("R Max", "Trackbars"), | |
cv2.getTrackbarPos("G Max", "Trackbars"), | |
cv2.getTrackbarPos("B Max", "Trackbars"), | |
] | |
) | |
# Get trackbar positions for Canny thresholds | |
canny_threshold1 = cv2.getTrackbarPos("Canny Thresh 1", "Trackbars") | |
canny_threshold2 = cv2.getTrackbarPos("Canny Thresh 2", "Trackbars") | |
# Detect batsman using the function with tunable parameters | |
batsman_contours = batsman_detect( | |
img, rgb_lower, rgb_upper, canny_threshold1, canny_threshold2 | |
) | |
img_contours = img.copy() # Copy image to draw contours on | |
for cnt in batsman_contours: | |
if ( | |
cv2.contourArea(cnt) > 5000 | |
): # Area filtering - you can adjust this threshold in main.py if needed | |
cv2.drawContours( | |
img_contours, cnt, -1, (0, 255, 0), 2 | |
) # Draw batsman contours in green | |
img_mask = cv2.inRange( | |
cv2.cvtColor(img, cv2.COLOR_BGR2RGB), rgb_lower, rgb_upper | |
) # Show the mask for tuning | |
img_stack = cvzone.stackImages( | |
[img, img_mask, img_contours], 3, 0.5 | |
) # Stack original, mask, and contours | |
cv2.imshow("Batsman Detection Tuning", img_stack) # Combined window for tuning | |
key = cv2.waitKey(1) | |
if key == ord("q"): | |
break | |
elif key == ord("s"): # Press 's' to save current RGB values to console | |
print("Saved RGB lower:", rgb_lower) | |
print("Saved RGB upper:", rgb_upper) | |
print("Saved Canny Threshold 1:", canny_threshold1) | |
print("Saved Canny Threshold 2:", canny_threshold2) | |
print( | |
"--- Copy these values to your main.py or default_rgb_lower/upper in batsman.py ---" | |
) | |
cap.release() | |
cv2.destroyAllWindows() | |