Spaces:
Runtime error
Runtime error
import os | |
import pdfplumber | |
import gradio as gr | |
from transformers import pipeline | |
from simple_salesforce import Salesforce | |
from dotenv import load_dotenv | |
import base64 | |
# Load environment variables from .env | |
load_dotenv() | |
# Salesforce credentials | |
SF_USERNAME = os.getenv("SF_USERNAME") | |
SF_PASSWORD = os.getenv("SF_PASSWORD") | |
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN") | |
SF_LOGIN_URL = os.getenv("SF_LOGIN_URL", "https://login.salesforce.com") | |
SF_OBJECT_NAME = os.getenv("SF_OBJECT_NAME", "Agent_Prospect__c") | |
SF_SCORE_FIELD = os.getenv("SF_SCORE_FIELD", "Suitability_Score__c") | |
SF_LINK_FIELD = os.getenv("SF_RESUME_FIELD_LINK", "Resume_File_Link__c") | |
# Validate required credentials | |
required = ["SF_USERNAME", "SF_PASSWORD", "SF_SECURITY_TOKEN"] | |
missing = [var for var in required if not os.getenv(var)] | |
if missing: | |
raise ValueError(f"Missing required .env variables: {', '.join(missing)}") | |
# Determine domain | |
domain = "login" if "login" in SF_LOGIN_URL else "test" | |
# Connect to Salesforce | |
try: | |
sf = Salesforce( | |
username=SF_USERNAME, | |
password=SF_PASSWORD, | |
security_token=SF_SECURITY_TOKEN, | |
domain=domain, | |
version="59.0" | |
) | |
print("Salesforce connection successful.") | |
except Exception as e: | |
raise ValueError(f"Failed to connect to Salesforce: {str(e)}") | |
# Load Hugging Face model | |
classifier = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment") | |
def process_resume(file): | |
try: | |
# Extract text from PDF | |
with pdfplumber.open(file.name) as pdf: | |
extracted_text = "\n".join([page.extract_text() or "" for page in pdf.pages]) | |
print(f"Extracted text length: {len(extracted_text)} characters") | |
if not extracted_text.strip(): | |
return "β No extractable text found in the PDF." | |
# Call Hugging Face model | |
result = classifier(extracted_text[:1000]) | |
label = result[0]['label'] | |
score = round(float(result[0]['score']) * 100, 2) | |
summary = f"Predicted Label: {label}\nSuitability Score: {score:.2f}" | |
print(f"Classifier result: {summary}") | |
# Encode PDF in base64 | |
with open(file.name, "rb") as f: | |
encoded_pdf = base64.b64encode(f.read()).decode("utf-8") | |
print(f"Encoded PDF size: {len(encoded_pdf)}") | |
# Upload file as ContentVersion | |
content_result = sf.ContentVersion.create({ | |
"Title": "Resume", | |
"PathOnClient": file.name, | |
"VersionData": encoded_pdf | |
}) | |
version_id = content_result.get("id") | |
print(f"ContentVersion created: {version_id}") | |
# Get ContentDocumentId from ContentVersion | |
query_result = sf.query( | |
f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{version_id}'" | |
) | |
print(f"Query result: {query_result}") | |
if not query_result["records"]: | |
return "β Failed to retrieve ContentDocumentId." | |
content_doc_id = query_result["records"][0]["ContentDocumentId"] | |
print(f"ContentDocumentId: {content_doc_id}") | |
# Create a new Agent_Prospect__c record | |
try: | |
record_result = sf.__getattr__(SF_OBJECT_NAME).create({ | |
SF_SCORE_FIELD: score, | |
SF_LINK_FIELD: "" # Placeholder; will update with download link | |
}) | |
record_id = record_result.get("id") | |
print(f"New Agent_Prospect__c record created: {record_id}") | |
except Exception as e: | |
print(f"Error creating Agent_Prospect__c record: {str(e)}") | |
raise | |
# Link file to the new Salesforce record | |
try: | |
sf.ContentDocumentLink.create({ | |
"ContentDocumentId": content_doc_id, | |
"LinkedEntityId": record_id, | |
"ShareType": "V", | |
"Visibility": "AllUsers" | |
}) | |
print("ContentDocumentLink created successfully.") | |
except Exception as e: | |
print(f"ContentDocumentLink Error: {str(e)}") | |
raise | |
# Create download link | |
download_link = f"https://{sf.sf_instance}/sfc/servlet.shepherd/document/download/{content_doc_id}" | |
print(f"Download link: {download_link}") | |
# Update the record with the download link | |
try: | |
sf.__getattr__(SF_OBJECT_NAME).update(record_id, { | |
SF_LINK_FIELD: download_link | |
}) | |
print("Salesforce record updated with download link.") | |
except Exception as e: | |
print(f"Error updating record with download link: {str(e)}") | |
raise | |
return f"{summary}\n\nβ New record created and resume uploaded to Salesforce.\nπ [Download Resume]({download_link})\nRecord ID: {record_id}" | |
except Exception as e: | |
return f"β Error: {str(e)}" | |
# Gradio Interface | |
gr.Interface( | |
fn=process_resume, | |
inputs=gr.File(label="Upload Resume (PDF)", file_types=[".pdf"]), | |
outputs="text", | |
title="LIC Resume AI Scorer", | |
description="Upload a resume PDF. A new record will be created in Salesforce with the score and resume." | |
).launch(share=False) |