project1 / app.py
dtkne's picture
Update app.py
a6886bf verified
raw
history blame
1.7 kB
import gradio as gr
import os
from transformers import pipeline
# Load ASR (Speech-to-Text) pipeline with timestamp handling
asr = pipeline(task="automatic-speech-recognition", model="distil-whisper/distil-small.en")
# Load Summarization model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Function to transcribe and summarize audio
def transcribe_and_summarize(audio_file):
if audio_file is None:
return "Error: No audio file provided.", ""
try:
# Transcribe audio (handling long-form audio)
transcription_result = asr(audio_file, return_timestamps=True)
# Extract transcribed text
transcribed_text = " ".join([segment['text'] for segment in transcription_result['chunks']])
# Ensure the transcribed text isn't too short for summarization
if len(transcribed_text.split()) < 50:
summarized_text = "Text too short to summarize."
else:
# Summarize the transcribed text
summary_result = summarizer(transcribed_text, max_length=100, min_length=30, do_sample=False)
summarized_text = summary_result[0]['summary_text']
return transcribed_text, summarized_text
except Exception as e:
return f"Error: {str(e)}", ""
# Create Gradio interface
iface = gr.Interface(
fn=transcribe_and_summarize,
inputs=gr.Audio(type="filepath"), # Accepts an audio file
outputs=[
gr.Textbox(label="Transcribed Text"),
gr.Textbox(label="Summarized Text")
]
)
# Get port safely (default to 7860 if not set)
port = int(os.environ.get('PORT1', 7860))
# Launch Gradio app
iface.launch(share=True, server_port=port)