File size: 7,810 Bytes
97381e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74855c7
97381e8
 
 
 
 
74855c7
97381e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python3
"""
Dwrko-M1.0 Testing Script
Test your fine-tuned Claude-like AI assistant
"""

import torch
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import time

def load_dwrko_model(model_path):
    """Load fine-tuned Dwrko-M1.0 model"""
    
    print(f"πŸ€– Loading Dwrko-M1.0 from {model_path}")
    
    # Load base tokenizer
    tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder2-3b")
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    # Load base model
    base_model = AutoModelForCausalLM.from_pretrained(
        "bigcode/starcoder2-3b",
        torch_dtype=torch.float16,
        device_map="auto"
    )
    
    # Load LoRA adapters
    model = PeftModel.from_pretrained(base_model, model_path)
    model = model.merge_and_unload()  # Merge adapters for faster inference
    
    print("βœ… Dwrko-M1.0 loaded successfully!")
    return model, tokenizer

def generate_response(model, tokenizer, prompt, max_length=512, temperature=0.7):
    """Generate response from Dwrko-M1.0"""
    
    # Format prompt
    formatted_prompt = f"### Instruction:\n{prompt}\n\n### Response:\n"
    
    # Tokenize
    inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
    
    # Generate
    start_time = time.time()
    with torch.no_grad():
        outputs = model.generate(
            inputs.input_ids,
            max_length=max_length,
            temperature=temperature,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id,
            top_p=0.9,
            repetition_penalty=1.1
        )
    
    generation_time = time.time() - start_time
    
    # Decode response
    full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    response = full_response.split("### Response:\n")[-1].strip()
    
    # Calculate tokens per second
    output_tokens = len(outputs[0]) - len(inputs.input_ids[0])
    tokens_per_second = output_tokens / generation_time if generation_time > 0 else 0
    
    return response, tokens_per_second

def run_test_suite(model, tokenizer):
    """Run comprehensive test suite for Dwrko-M1.0"""
    
    print("\n" + "="*60)
    print("πŸ§ͺ Running Dwrko-M1.0 Test Suite")
    print("="*60)
    
    test_prompts = [
        # Coding Tests
        {
            "category": "πŸ’» Coding",
            "prompt": "Write a Python function to calculate the factorial of a number using recursion.",
            "expected_keywords": ["def", "factorial", "return", "if", "else"]
        },
        {
            "category": "πŸ’» Coding", 
            "prompt": "How do you reverse a string in Python? Show me 3 different methods.",
            "expected_keywords": ["[::-1]", "reversed", "for", "range"]
        },
        {
            "category": "πŸ’» Coding",
            "prompt": "Write a function to check if a number is prime.",
            "expected_keywords": ["def", "prime", "for", "range", "return"]
        },
        
        # Reasoning Tests
        {
            "category": "🧠 Reasoning",
            "prompt": "If a train travels 120 miles in 2 hours, what is its average speed?",
            "expected_keywords": ["60", "mph", "speed", "miles", "hour"]
        },
        {
            "category": "🧠 Reasoning",
            "prompt": "Solve this equation: 2x + 5 = 13. Show your work.",
            "expected_keywords": ["x", "4", "subtract", "divide", "2x"]
        },
        {
            "category": "🧠 Reasoning",
            "prompt": "What is the next number in this sequence: 2, 4, 8, 16, ?",
            "expected_keywords": ["32", "double", "multiply", "pattern"]
        },
        
        # Explanation Tests
        {
            "category": "πŸ“š Explanation",
            "prompt": "Explain what machine learning is in simple terms.",
            "expected_keywords": ["algorithm", "data", "learn", "pattern", "computer"]
        },
        {
            "category": "πŸ“š Explanation",
            "prompt": "What is the difference between a list and a tuple in Python?",
            "expected_keywords": ["mutable", "immutable", "[]", "()", "change"]
        }
    ]
    
    total_tests = len(test_prompts)
    passed_tests = 0
    total_tokens_per_second = 0
    
    for i, test in enumerate(test_prompts, 1):
        print(f"\nπŸ” Test {i}/{total_tests} - {test['category']}")
        print(f"❓ Prompt: {test['prompt']}")
        
        # Generate response
        response, tps = generate_response(model, tokenizer, test['prompt'])
        
        print(f"πŸ€– Dwrko-M1.0: {response[:200]}{'...' if len(response) > 200 else ''}")
        print(f"⚑ Speed: {tps:.1f} tokens/second")
        
        # Check if response contains expected keywords
        response_lower = response.lower()
        found_keywords = sum(1 for keyword in test['expected_keywords'] 
                           if keyword.lower() in response_lower)
        
        if found_keywords >= len(test['expected_keywords']) // 2:  # At least half keywords found
            print("βœ… Test PASSED")
            passed_tests += 1
        else:
            print("❌ Test FAILED")
            print(f"   Expected keywords: {test['expected_keywords']}")
        
        total_tokens_per_second += tps
        print("-" * 60)
    
    # Final results
    print(f"\nπŸ“Š Test Results Summary:")
    print(f"βœ… Passed: {passed_tests}/{total_tests} ({passed_tests/total_tests*100:.1f}%)")
    print(f"⚑ Average Speed: {total_tokens_per_second/total_tests:.1f} tokens/second")
    
    if passed_tests/total_tests >= 0.7:
        print("πŸŽ‰ Dwrko-M1.0 is performing well!")
    else:
        print("⚠️  Consider additional training or parameter tuning")

def interactive_mode(model, tokenizer):
    """Interactive chat with Dwrko-M1.0"""
    
    print("\n" + "="*60)
    print("πŸ’¬ Interactive Mode - Chat with Dwrko-M1.0")
    print("Type 'quit' to exit")
    print("="*60)
    
    while True:
        user_input = input("\nπŸ‘€ You: ").strip()
        
        if user_input.lower() in ['quit', 'exit', 'q']:
            print("πŸ‘‹ Goodbye!")
            break
        
        if not user_input:
            continue
        
        print("πŸ€– Dwrko-M1.0: ", end="", flush=True)
        response, tps = generate_response(model, tokenizer, user_input, max_length=256)
        print(response)
        print(f"   ⚑ {tps:.1f} tokens/sec")

def main():
    parser = argparse.ArgumentParser(description="Test Dwrko-M1.0 Model")
    parser.add_argument("--model_path", required=True, help="Path to fine-tuned Dwrko-M1.0")
    parser.add_argument("--test_suite", action="store_true", help="Run automated test suite")
    parser.add_argument("--interactive", action="store_true", help="Start interactive chat")
    parser.add_argument("--single_test", type=str, help="Test single prompt")
    
    args = parser.parse_args()
    
    # Load model
    model, tokenizer = load_dwrko_model(args.model_path)
    
    if args.test_suite:
        run_test_suite(model, tokenizer)
    
    if args.single_test:
        print(f"\nπŸ” Testing single prompt: {args.single_test}")
        response, tps = generate_response(model, tokenizer, args.single_test)
        print(f"πŸ€– Dwrko-M1.0: {response}")
        print(f"⚑ Speed: {tps:.1f} tokens/second")
    
    if args.interactive:
        interactive_mode(model, tokenizer)
    
    if not any([args.test_suite, args.interactive, args.single_test]):
        print("\n⚠️  Please specify --test_suite, --interactive, or --single_test")
        print("Example: python test_dwrko.py --model_path ./dwrko-m1.0 --test_suite")

if __name__ == "__main__":
    main()