Spaces:
Running
Running
A newer version of the Gradio SDK is available:
5.49.1
π How to Use Dwrko-M1.0 - Complete Guide
Your Claude-like AI Assistant is LIVE! Here's how you and others can use it:
π For End Users (No Coding Required)
Method 1: Direct Web Access
π https://huggingface.co/spaces/dwrkotech/Dwrko-M1.0
Steps:
- Click the link above
- Go to "Model Setup" tab
- Click "Load Dwrko-M1.0 Base Model" β
- Use "Dataset Preparation" to train with your data
- Use "Fine-tuning" to create your specialized model
What Users Can Do:
- π» Code Generation: "Write a Python function for sorting"
- π§ Problem Solving: "Solve this math equation: 2x + 5 = 13"
- π Learning: "Explain machine learning in simple terms"
- π§ Debugging: "Fix this Python code: [paste code]"
π¨βπ» For Developers (API Integration)
Method 1: HuggingFace Spaces API
import requests
def ask_dwrko(question):
api_url = "https://dwrkotech-dwrko-m1-0.hf.space/api/predict"
payload = {
"data": [question],
"fn_index": 0 # Function index for the interface
}
response = requests.post(api_url, json=payload)
return response.json()["data"][0]
# Example usage
answer = ask_dwrko("Write a Python function to check prime numbers")
print(answer)
Method 2: Gradio Client
from gradio_client import Client
client = Client("https://dwrkotech-dwrko-m1-0.hf.space/")
# Use Dwrko-M1.0
result = client.predict(
"Write a function to reverse a string",
api_name="/predict"
)
print(result)
Method 3: Embed in Your Website
<!DOCTYPE html>
<html>
<head>
<title>My AI Assistant</title>
</head>
<body>
<h1>Powered by Dwrko-M1.0</h1>
<iframe
src="https://dwrkotech-dwrko-m1-0.hf.space"
width="100%"
height="600px">
</iframe>
</body>
</html>
π’ For Businesses (Custom Integration)
Method 1: Custom Chatbot
import gradio as gr
import requests
def dwrko_chatbot(message, history):
# Call Dwrko-M1.0 API
api_url = "https://dwrkotech-dwrko-m1-0.hf.space/api/predict"
response = requests.post(api_url, json={
"data": [message]
})
ai_response = response.json()["data"][0]
history.append([message, ai_response])
return history, ""
# Create business chatbot
with gr.Blocks(title="Company AI Assistant") as demo:
gr.Markdown("# π€ Our AI Assistant (Powered by Dwrko-M1.0)")
chatbot = gr.Chatbot()
msg = gr.Textbox(placeholder="Ask me anything about coding...")
msg.submit(dwrko_chatbot, [msg, chatbot], [chatbot, msg])
demo.launch()
Method 2: Slack/Discord Bot
import discord
import requests
class DwrkoBot(discord.Client):
async def on_message(self, message):
if message.author == self.user:
return
if message.content.startswith('!dwrko'):
question = message.content[7:] # Remove '!dwrko '
# Call Dwrko-M1.0
api_url = "https://dwrkotech-dwrko-m1-0.hf.space/api/predict"
response = requests.post(api_url, json={"data": [question]})
answer = response.json()["data"][0]
await message.channel.send(f"π€ **Dwrko-M1.0**: {answer}")
# Run bot
bot = DwrkoBot()
bot.run('YOUR_DISCORD_TOKEN')
π± For Mobile Apps
React Native Example
const askDwrko = async (question) => {
const response = await fetch('https://dwrkotech-dwrko-m1-0.hf.space/api/predict', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
data: [question]
})
});
const result = await response.json();
return result.data[0];
};
// Usage in React Native component
const handleAsk = async () => {
const answer = await askDwrko("Explain React hooks");
setResponse(answer);
};
π For Students & Educators
Study Assistant
def create_study_assistant():
import gradio as gr
def dwrko_tutor(subject, question):
prompt = f"As a {subject} tutor, {question}"
# Call Dwrko-M1.0
api_url = "https://dwrkotech-dwrko-m1-0.hf.space/api/predict"
response = requests.post(api_url, json={"data": [prompt]})
return response.json()["data"][0]
interface = gr.Interface(
fn=dwrko_tutor,
inputs=[
gr.Dropdown(["Python", "JavaScript", "Math", "Science"], label="Subject"),
gr.Textbox(label="Your Question")
],
outputs="text",
title="π Study Assistant (Powered by Dwrko-M1.0)"
)
return interface
# Launch study assistant
study_app = create_study_assistant()
study_app.launch()
π₯ Advanced Use Cases
1. Code Review Assistant
def code_reviewer(code):
prompt = f"Review this code and suggest improvements:\n\n{code}"
# Call Dwrko-M1.0 API
return dwrko_response
2. Documentation Generator
def doc_generator(function_code):
prompt = f"Generate documentation for this function:\n\n{function_code}"
# Call Dwrko-M1.0 API
return dwrko_response
3. Learning Path Creator
def learning_path(topic, level):
prompt = f"Create a {level} learning path for {topic}"
# Call Dwrko-M1.0 API
return dwrko_response
π Usage Analytics
Track Usage (Optional)
import datetime
def track_usage(user_question, ai_response):
usage_data = {
"timestamp": datetime.now(),
"question": user_question,
"response": ai_response,
"model": "Dwrko-M1.0"
}
# Save to database or analytics service
save_to_analytics(usage_data)
π Share Your Dwrko-M1.0
Social Media Templates:
Twitter:
π€ Just launched my own Claude-like AI assistant!
β¨ Dwrko-M1.0 specializes in:
β’ Code generation & debugging
β’ Mathematical reasoning
β’ Problem solving
β’ Educational content
Try it FREE: https://huggingface.co/spaces/dwrkotech/Dwrko-M1.0
#AI #MachineLearning #Coding #OpenSource
LinkedIn:
Excited to share my latest AI project! π
I've created Dwrko-M1.0, a specialized AI assistant for coding and reasoning tasks. Built on StarCoder2-3B and optimized for practical use.
Key features:
β
Code generation across 80+ languages
β
Mathematical problem solving
β
Memory efficient (16GB RAM)
β
Free to use for everyone
Check it out: https://huggingface.co/spaces/dwrkotech/Dwrko-M1.0
#ArtificialIntelligence #SoftwareDevelopment #Innovation
π― Next Steps for Growth
- Collect User Feedback - Monitor usage and improve
- Add More Features - Voice input, image processing
- Create Mobile App - Native iOS/Android apps
- Build Community - Discord server, GitHub discussions
- Monetization - Premium features, API subscriptions
π Congratulations! Your Dwrko-M1.0 is now ready for the world!
Users can start using it immediately at: https://huggingface.co/spaces/dwrkotech/Dwrko-M1.0