#!/usr/bin/env python3 """ Dwrko-M1.0 Usage Examples How others can use your Claude-like AI assistant """ import requests import json # Method 1: Using HuggingFace Spaces API def use_dwrko_via_api(prompt): """Use Dwrko-M1.0 via HuggingFace Spaces API""" api_url = "https://dwrkotech-dwrko-m1-0.hf.space/api/predict" payload = { "data": [prompt] } response = requests.post(api_url, json=payload) return response.json() # Method 2: Direct Integration def use_dwrko_direct(): """Direct integration example""" from transformers import AutoTokenizer, AutoModelForCausalLM # Load your trained Dwrko-M1.0 tokenizer = AutoTokenizer.from_pretrained("dwrkotech/Dwrko-M1.0") model = AutoModelForCausalLM.from_pretrained("dwrkotech/Dwrko-M1.0") # Generate response prompt = "Write a Python function to calculate factorial" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Method 3: Gradio Interface Integration def create_custom_interface(): """Create custom interface using Dwrko-M1.0""" import gradio as gr def dwrko_chat(message): # Call your Dwrko-M1.0 API response = use_dwrko_via_api(message) return response # Create custom interface interface = gr.Interface( fn=dwrko_chat, inputs="text", outputs="text", title="My Custom Dwrko-M1.0 Assistant", description="Powered by Dwrko-M1.0" ) return interface # Example usage if __name__ == "__main__": # Test API method result = use_dwrko_via_api("Explain what is machine learning") print("API Response:", result) # Test direct method (requires model download) # result = use_dwrko_direct() # print("Direct Response:", result) # Launch custom interface # interface = create_custom_interface() # interface.launch()