Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import tqdm
|
4 |
+
import uuid
|
5 |
+
import logging
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import spaces
|
9 |
+
import trackers
|
10 |
+
import numpy as np
|
11 |
+
import gradio as gr
|
12 |
+
import imageio.v3 as iio
|
13 |
+
import supervision as sv
|
14 |
+
|
15 |
+
from pathlib import Path
|
16 |
+
from functools import lru_cache
|
17 |
+
from typing import List, Optional, Tuple
|
18 |
+
|
19 |
+
from PIL import Image
|
20 |
+
from transformers import AutoModelForObjectDetection, AutoImageProcessor
|
21 |
+
from transformers.image_utils import load_image
|
22 |
+
|
23 |
+
|
24 |
+
# Configuration constants
|
25 |
+
CHECKPOINTS = [
|
26 |
+
"ustc-community/dfine-medium-obj2coco",
|
27 |
+
"ustc-community/dfine-medium-coco",
|
28 |
+
"ustc-community/dfine-medium-obj365",
|
29 |
+
"ustc-community/dfine-nano-coco",
|
30 |
+
"ustc-community/dfine-small-coco",
|
31 |
+
"ustc-community/dfine-large-coco",
|
32 |
+
"ustc-community/dfine-xlarge-coco",
|
33 |
+
"ustc-community/dfine-small-obj365",
|
34 |
+
"ustc-community/dfine-large-obj365",
|
35 |
+
"ustc-community/dfine-xlarge-obj365",
|
36 |
+
"ustc-community/dfine-small-obj2coco",
|
37 |
+
"ustc-community/dfine-large-obj2coco-e25",
|
38 |
+
"ustc-community/dfine-xlarge-obj2coco",
|
39 |
+
]
|
40 |
+
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
|
41 |
+
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
|
42 |
+
|
43 |
+
TORCH_DTYPE = torch.float32
|
44 |
+
|
45 |
+
# Image
|
46 |
+
IMAGE_EXAMPLES = [
|
47 |
+
{"path": "./examples/images/tennis.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
48 |
+
{"path": "./examples/images/dogs.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
49 |
+
{"path": "./examples/images/nascar.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
50 |
+
{"path": "./examples/images/crossroad.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
51 |
+
{
|
52 |
+
"path": None,
|
53 |
+
"use_url": True,
|
54 |
+
"url": "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg",
|
55 |
+
"label": "Flickr Image",
|
56 |
+
},
|
57 |
+
]
|
58 |
+
|
59 |
+
# Video
|
60 |
+
MAX_NUM_FRAMES = 250
|
61 |
+
BATCH_SIZE = 4
|
62 |
+
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
|
63 |
+
VIDEO_OUTPUT_DIR = Path("static/videos")
|
64 |
+
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
65 |
+
|
66 |
+
class TrackingAlgorithm:
|
67 |
+
BYTETRACK = "ByteTrack (2021)"
|
68 |
+
DEEPSORT = "DeepSORT (2017)"
|
69 |
+
SORT = "SORT (2016)"
|
70 |
+
|
71 |
+
TRACKERS = [None, TrackingAlgorithm.BYTETRACK, TrackingAlgorithm.DEEPSORT, TrackingAlgorithm.SORT]
|
72 |
+
VIDEO_EXAMPLES = [
|
73 |
+
{"path": "./examples/videos/dogs_running.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
74 |
+
{"path": "./examples/videos/traffic.mp4", "label": "Local Video", "tracker": TrackingAlgorithm.BYTETRACK, "classes": "car, truck, bus"},
|
75 |
+
{"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
76 |
+
{"path": "./examples/videos/break_dance.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
77 |
+
]
|
78 |
+
|
79 |
+
|
80 |
+
# Create a color palette for visualization
|
81 |
+
# These hex color codes define different colors for tracking different objects
|
82 |
+
color = sv.ColorPalette.from_hex([
|
83 |
+
"#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
|
84 |
+
"#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
|
85 |
+
])
|
86 |
+
|
87 |
+
|
88 |
+
logging.basicConfig(
|
89 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
90 |
+
)
|
91 |
+
logger = logging.getLogger(__name__)
|
92 |
+
|
93 |
+
|
94 |
+
@lru_cache(maxsize=3)
|
95 |
+
def get_model_and_processor(checkpoint: str):
|
96 |
+
model = AutoModelForObjectDetection.from_pretrained(checkpoint, torch_dtype=TORCH_DTYPE)
|
97 |
+
image_processor = AutoImageProcessor.from_pretrained(checkpoint)
|
98 |
+
return model, image_processor
|
99 |
+
|
100 |
+
|
101 |
+
@spaces.GPU(duration=20)
|
102 |
+
def detect_objects(
|
103 |
+
checkpoint: str,
|
104 |
+
images: List[np.ndarray] | np.ndarray,
|
105 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
106 |
+
target_size: Optional[Tuple[int, int]] = None,
|
107 |
+
batch_size: int = BATCH_SIZE,
|
108 |
+
classes: Optional[List[str]] = None,
|
109 |
+
):
|
110 |
+
|
111 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
112 |
+
model, image_processor = get_model_and_processor(checkpoint)
|
113 |
+
model = model.to(device)
|
114 |
+
|
115 |
+
if classes is not None:
|
116 |
+
wrong_classes = [cls for cls in classes if cls not in model.config.label2id]
|
117 |
+
if wrong_classes:
|
118 |
+
gr.Warning(f"Classes not found in model config: {wrong_classes}")
|
119 |
+
keep_ids = [model.config.label2id[cls] for cls in classes if cls in model.config.label2id]
|
120 |
+
else:
|
121 |
+
keep_ids = None
|
122 |
+
|
123 |
+
if isinstance(images, np.ndarray) and images.ndim == 4:
|
124 |
+
images = [x for x in images] # split video array into list of images
|
125 |
+
|
126 |
+
batches = [images[i:i + batch_size] for i in range(0, len(images), batch_size)]
|
127 |
+
|
128 |
+
results = []
|
129 |
+
for batch in tqdm.tqdm(batches, desc="Processing frames"):
|
130 |
+
|
131 |
+
# preprocess images
|
132 |
+
inputs = image_processor(images=batch, return_tensors="pt")
|
133 |
+
inputs = inputs.to(device).to(TORCH_DTYPE)
|
134 |
+
|
135 |
+
# forward pass
|
136 |
+
with torch.no_grad():
|
137 |
+
outputs = model(**inputs)
|
138 |
+
|
139 |
+
# postprocess outputs
|
140 |
+
if target_size:
|
141 |
+
target_sizes = [target_size] * len(batch)
|
142 |
+
else:
|
143 |
+
target_sizes = [(image.shape[0], image.shape[1]) for image in batch]
|
144 |
+
|
145 |
+
batch_results = image_processor.post_process_object_detection(
|
146 |
+
outputs, target_sizes=target_sizes, threshold=confidence_threshold
|
147 |
+
)
|
148 |
+
|
149 |
+
results.extend(batch_results)
|
150 |
+
|
151 |
+
# move results to cpu
|
152 |
+
for i, result in enumerate(results):
|
153 |
+
results[i] = {k: v.cpu() for k, v in result.items()}
|
154 |
+
if keep_ids is not None:
|
155 |
+
keep = torch.isin(results[i]["labels"], torch.tensor(keep_ids))
|
156 |
+
results[i] = {k: v[keep] for k, v in results[i].items()}
|
157 |
+
|
158 |
+
return results, model.config.id2label
|
159 |
+
|
160 |
+
|
161 |
+
def process_image(
|
162 |
+
checkpoint: str = DEFAULT_CHECKPOINT,
|
163 |
+
image: Optional[Image.Image] = None,
|
164 |
+
url: Optional[str] = None,
|
165 |
+
use_url: bool = False,
|
166 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
167 |
+
):
|
168 |
+
if not use_url:
|
169 |
+
url = None
|
170 |
+
|
171 |
+
if (image is None) ^ bool(url):
|
172 |
+
raise ValueError(f"Either image or url must be provided, but not both.")
|
173 |
+
|
174 |
+
if url:
|
175 |
+
image = load_image(url)
|
176 |
+
|
177 |
+
results, id2label = detect_objects(
|
178 |
+
checkpoint=checkpoint,
|
179 |
+
images=[np.array(image)],
|
180 |
+
confidence_threshold=confidence_threshold,
|
181 |
+
)
|
182 |
+
result = results[0] # first image in batch (we have batch size 1)
|
183 |
+
|
184 |
+
annotations = []
|
185 |
+
for label, score, box in zip(result["labels"], result["scores"], result["boxes"]):
|
186 |
+
text_label = id2label[label.item()]
|
187 |
+
formatted_label = f"{text_label} ({score:.2f})"
|
188 |
+
x_min, y_min, x_max, y_max = box.cpu().numpy().round().astype(int)
|
189 |
+
x_min = max(0, x_min)
|
190 |
+
y_min = max(0, y_min)
|
191 |
+
x_max = min(image.width - 1, x_max)
|
192 |
+
y_max = min(image.height - 1, y_max)
|
193 |
+
annotations.append(((x_min, y_min, x_max, y_max), formatted_label))
|
194 |
+
|
195 |
+
return (image, annotations)
|
196 |
+
|
197 |
+
|
198 |
+
def get_target_size(image_height, image_width, max_size: int):
|
199 |
+
if image_height < max_size and image_width < max_size:
|
200 |
+
new_height, new_width = image_height, image_width
|
201 |
+
elif image_height > image_width:
|
202 |
+
new_height = max_size
|
203 |
+
new_width = int(image_width * max_size / image_height)
|
204 |
+
else:
|
205 |
+
new_width = max_size
|
206 |
+
new_height = int(image_height * max_size / image_width)
|
207 |
+
|
208 |
+
# make even (for video codec compatibility)
|
209 |
+
new_height = new_height // 2 * 2
|
210 |
+
new_width = new_width // 2 * 2
|
211 |
+
|
212 |
+
return new_width, new_height
|
213 |
+
|
214 |
+
|
215 |
+
def read_video_k_frames(video_path: str, k: int, read_every_i_frame: int = 1):
|
216 |
+
cap = cv2.VideoCapture(video_path)
|
217 |
+
frames = []
|
218 |
+
i = 0
|
219 |
+
progress_bar = tqdm.tqdm(total=k, desc="Reading frames")
|
220 |
+
while cap.isOpened() and len(frames) < k:
|
221 |
+
ret, frame = cap.read()
|
222 |
+
if not ret:
|
223 |
+
break
|
224 |
+
if i % read_every_i_frame == 0:
|
225 |
+
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
226 |
+
progress_bar.update(1)
|
227 |
+
i += 1
|
228 |
+
cap.release()
|
229 |
+
progress_bar.close()
|
230 |
+
return frames
|
231 |
+
|
232 |
+
|
233 |
+
def get_tracker(tracker: str, fps: float):
|
234 |
+
if tracker == TrackingAlgorithm.SORT:
|
235 |
+
return trackers.SORTTracker(frame_rate=fps)
|
236 |
+
elif tracker == TrackingAlgorithm.DEEPSORT:
|
237 |
+
feature_extractor = trackers.DeepSORTFeatureExtractor.from_timm("mobilenetv4_conv_small.e1200_r224_in1k", device="cpu")
|
238 |
+
return trackers.DeepSORTTracker(feature_extractor, frame_rate=fps)
|
239 |
+
elif tracker == TrackingAlgorithm.BYTETRACK:
|
240 |
+
return sv.ByteTrack(frame_rate=int(fps))
|
241 |
+
else:
|
242 |
+
raise ValueError(f"Invalid tracker: {tracker}")
|
243 |
+
|
244 |
+
|
245 |
+
def update_tracker(tracker, detections, frame):
|
246 |
+
tracker_name = tracker.__class__.__name__
|
247 |
+
if tracker_name == "SORTTracker":
|
248 |
+
return tracker.update(detections)
|
249 |
+
elif tracker_name == "DeepSORTTracker":
|
250 |
+
return tracker.update(detections, frame)
|
251 |
+
elif tracker_name == "ByteTrack":
|
252 |
+
return tracker.update_with_detections(detections)
|
253 |
+
else:
|
254 |
+
raise ValueError(f"Invalid tracker: {tracker}")
|
255 |
+
|
256 |
+
|
257 |
+
def process_video(
|
258 |
+
video_path: str,
|
259 |
+
checkpoint: str,
|
260 |
+
tracker_algorithm: Optional[str] = None,
|
261 |
+
classes: str = "all",
|
262 |
+
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
263 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
264 |
+
) -> str:
|
265 |
+
|
266 |
+
if not video_path or not os.path.isfile(video_path):
|
267 |
+
raise ValueError(f"Invalid video path: {video_path}")
|
268 |
+
|
269 |
+
ext = os.path.splitext(video_path)[1].lower()
|
270 |
+
if ext not in ALLOWED_VIDEO_EXTENSIONS:
|
271 |
+
raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}")
|
272 |
+
|
273 |
+
video_info = sv.VideoInfo.from_video_path(video_path)
|
274 |
+
read_each_i_frame = max(1, video_info.fps // 25)
|
275 |
+
target_fps = video_info.fps / read_each_i_frame
|
276 |
+
target_width, target_height = get_target_size(video_info.height, video_info.width, 1080)
|
277 |
+
|
278 |
+
n_frames_to_read = min(MAX_NUM_FRAMES, video_info.total_frames // read_each_i_frame)
|
279 |
+
frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame)
|
280 |
+
frames = [cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_CUBIC) for frame in frames]
|
281 |
+
|
282 |
+
# Set the color lookup mode to assign colors by track ID
|
283 |
+
# This mean objects with the same track ID will be annotated by the same color
|
284 |
+
color_lookup = sv.ColorLookup.TRACK if tracker_algorithm else sv.ColorLookup.CLASS
|
285 |
+
|
286 |
+
box_annotator = sv.BoxAnnotator(color, color_lookup=color_lookup, thickness=1)
|
287 |
+
label_annotator = sv.LabelAnnotator(color, color_lookup=color_lookup, text_scale=0.5)
|
288 |
+
trace_annotator = sv.TraceAnnotator(color, color_lookup=color_lookup, thickness=1, trace_length=100)
|
289 |
+
|
290 |
+
# preprocess classes
|
291 |
+
if classes != "all":
|
292 |
+
classes_list = [cls.strip().lower() for cls in classes.split(",")]
|
293 |
+
else:
|
294 |
+
classes_list = None
|
295 |
+
|
296 |
+
results, id2label = detect_objects(
|
297 |
+
images=np.array(frames),
|
298 |
+
checkpoint=checkpoint,
|
299 |
+
confidence_threshold=confidence_threshold,
|
300 |
+
target_size=(target_height, target_width),
|
301 |
+
classes=classes_list,
|
302 |
+
)
|
303 |
+
|
304 |
+
|
305 |
+
annotated_frames = []
|
306 |
+
|
307 |
+
# detections
|
308 |
+
if tracker_algorithm:
|
309 |
+
tracker = get_tracker(tracker_algorithm, target_fps)
|
310 |
+
for frame, result in progress.tqdm(zip(frames, results), desc="Tracking objects", total=len(frames)):
|
311 |
+
detections = sv.Detections.from_transformers(result, id2label=id2label)
|
312 |
+
detections = detections.with_nms(threshold=0.95, class_agnostic=True)
|
313 |
+
detections = update_tracker(tracker, detections, frame)
|
314 |
+
labels = [f"#{tracker_id} {id2label[class_id]}" for class_id, tracker_id in zip(detections.class_id, detections.tracker_id)]
|
315 |
+
annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
|
316 |
+
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
317 |
+
annotated_frame = trace_annotator.annotate(scene=annotated_frame, detections=detections)
|
318 |
+
annotated_frames.append(annotated_frame)
|
319 |
+
|
320 |
+
else:
|
321 |
+
for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)):
|
322 |
+
detections = sv.Detections.from_transformers(result, id2label=id2label)
|
323 |
+
detections = detections.with_nms(threshold=0.95, class_agnostic=True)
|
324 |
+
annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
|
325 |
+
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
|
326 |
+
annotated_frames.append(annotated_frame)
|
327 |
+
|
328 |
+
output_filename = os.path.join(VIDEO_OUTPUT_DIR, f"output_{uuid.uuid4()}.mp4")
|
329 |
+
iio.imwrite(output_filename, annotated_frames, fps=target_fps, codec="h264")
|
330 |
+
return output_filename
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
def create_image_inputs() -> List[gr.components.Component]:
|
335 |
+
return [
|
336 |
+
gr.Image(
|
337 |
+
label="Upload Image",
|
338 |
+
type="pil",
|
339 |
+
sources=["upload", "webcam"],
|
340 |
+
interactive=True,
|
341 |
+
elem_classes="input-component",
|
342 |
+
),
|
343 |
+
gr.Checkbox(label="Use Image URL Instead", value=False),
|
344 |
+
gr.Textbox(
|
345 |
+
label="Image URL",
|
346 |
+
placeholder="https://example.com/image.jpg",
|
347 |
+
visible=False,
|
348 |
+
elem_classes="input-component",
|
349 |
+
),
|
350 |
+
gr.Dropdown(
|
351 |
+
choices=CHECKPOINTS,
|
352 |
+
label="Select Model Checkpoint",
|
353 |
+
value=DEFAULT_CHECKPOINT,
|
354 |
+
elem_classes="input-component",
|
355 |
+
),
|
356 |
+
gr.Slider(
|
357 |
+
minimum=0.1,
|
358 |
+
maximum=1.0,
|
359 |
+
value=DEFAULT_CONFIDENCE_THRESHOLD,
|
360 |
+
step=0.1,
|
361 |
+
label="Confidence Threshold",
|
362 |
+
elem_classes="input-component",
|
363 |
+
),
|
364 |
+
]
|
365 |
+
|
366 |
+
|
367 |
+
def create_video_inputs() -> List[gr.components.Component]:
|
368 |
+
return [
|
369 |
+
gr.Video(
|
370 |
+
label="Upload Video",
|
371 |
+
sources=["upload"],
|
372 |
+
interactive=True,
|
373 |
+
format="mp4", # Ensure MP4 format
|
374 |
+
elem_classes="input-component",
|
375 |
+
),
|
376 |
+
gr.Dropdown(
|
377 |
+
choices=CHECKPOINTS,
|
378 |
+
label="Select Model Checkpoint",
|
379 |
+
value=DEFAULT_CHECKPOINT,
|
380 |
+
elem_classes="input-component",
|
381 |
+
),
|
382 |
+
gr.Dropdown(
|
383 |
+
choices=TRACKERS,
|
384 |
+
label="Select Tracker (Optional)",
|
385 |
+
value=None,
|
386 |
+
elem_classes="input-component",
|
387 |
+
),
|
388 |
+
gr.TextArea(
|
389 |
+
label="Specify Class Names to Detect (comma separated)",
|
390 |
+
value="all",
|
391 |
+
lines=1,
|
392 |
+
elem_classes="input-component",
|
393 |
+
),
|
394 |
+
gr.Slider(
|
395 |
+
minimum=0.1,
|
396 |
+
maximum=1.0,
|
397 |
+
value=DEFAULT_CONFIDENCE_THRESHOLD,
|
398 |
+
step=0.1,
|
399 |
+
label="Confidence Threshold",
|
400 |
+
elem_classes="input-component",
|
401 |
+
),
|
402 |
+
]
|
403 |
+
|
404 |
+
|
405 |
+
def create_button_row() -> List[gr.Button]:
|
406 |
+
return [
|
407 |
+
gr.Button(
|
408 |
+
f"Detect Objects", variant="primary", elem_classes="action-button"
|
409 |
+
),
|
410 |
+
gr.Button(f"Clear", variant="secondary", elem_classes="action-button"),
|
411 |
+
]
|
412 |
+
|
413 |
+
|
414 |
+
# Gradio interface
|
415 |
+
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
416 |
+
gr.Markdown(
|
417 |
+
"""
|
418 |
+
# Object Detection Demo
|
419 |
+
Experience state-of-the-art object detection with USTC's [D-FINE](https://huggingface.co/docs/transformers/main/model_doc/d_fine) models.
|
420 |
+
- **Image** and **Video** modes are supported.
|
421 |
+
- Select a model and adjust the confidence threshold to see detections!
|
422 |
+
- On video mode, you can enable tracking powered by [Supervision](https://github.com/roboflow/supervision) and [Trackers](https://github.com/roboflow/trackers) from Roboflow.
|
423 |
+
""",
|
424 |
+
elem_classes="header-text",
|
425 |
+
)
|
426 |
+
|
427 |
+
with gr.Tabs():
|
428 |
+
with gr.Tab("Image"):
|
429 |
+
with gr.Row():
|
430 |
+
with gr.Column(scale=1, min_width=300):
|
431 |
+
with gr.Group():
|
432 |
+
(
|
433 |
+
image_input,
|
434 |
+
use_url,
|
435 |
+
url_input,
|
436 |
+
image_model_checkpoint,
|
437 |
+
image_confidence_threshold,
|
438 |
+
) = create_image_inputs()
|
439 |
+
image_detect_button, image_clear_button = create_button_row()
|
440 |
+
with gr.Column(scale=2):
|
441 |
+
image_output = gr.AnnotatedImage(
|
442 |
+
label="Detection Results",
|
443 |
+
show_label=True,
|
444 |
+
color_map=None,
|
445 |
+
elem_classes="output-component",
|
446 |
+
)
|
447 |
+
gr.Examples(
|
448 |
+
examples=[
|
449 |
+
[
|
450 |
+
DEFAULT_CHECKPOINT,
|
451 |
+
example["path"],
|
452 |
+
example["url"],
|
453 |
+
example["use_url"],
|
454 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
455 |
+
]
|
456 |
+
for example in IMAGE_EXAMPLES
|
457 |
+
],
|
458 |
+
inputs=[
|
459 |
+
image_model_checkpoint,
|
460 |
+
image_input,
|
461 |
+
url_input,
|
462 |
+
use_url,
|
463 |
+
image_confidence_threshold,
|
464 |
+
],
|
465 |
+
outputs=[image_output],
|
466 |
+
fn=process_image,
|
467 |
+
label="Select an image example to populate inputs",
|
468 |
+
cache_examples=True,
|
469 |
+
cache_mode="lazy",
|
470 |
+
)
|
471 |
+
|
472 |
+
with gr.Tab("Video"):
|
473 |
+
gr.Markdown(
|
474 |
+
f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)."
|
475 |
+
)
|
476 |
+
with gr.Row():
|
477 |
+
with gr.Column(scale=1, min_width=300):
|
478 |
+
with gr.Group():
|
479 |
+
video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold = create_video_inputs()
|
480 |
+
video_detect_button, video_clear_button = create_button_row()
|
481 |
+
with gr.Column(scale=2):
|
482 |
+
video_output = gr.Video(
|
483 |
+
label="Detection Results",
|
484 |
+
format="mp4", # Explicit MP4 format
|
485 |
+
elem_classes="output-component",
|
486 |
+
)
|
487 |
+
|
488 |
+
gr.Examples(
|
489 |
+
examples=[
|
490 |
+
[example["path"], DEFAULT_CHECKPOINT, example["tracker"], example["classes"], DEFAULT_CONFIDENCE_THRESHOLD]
|
491 |
+
for example in VIDEO_EXAMPLES
|
492 |
+
],
|
493 |
+
inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
|
494 |
+
outputs=[video_output],
|
495 |
+
fn=process_video,
|
496 |
+
cache_examples=False,
|
497 |
+
label="Select a video example to populate inputs",
|
498 |
+
)
|
499 |
+
|
500 |
+
# Dynamic visibility for URL input
|
501 |
+
use_url.change(
|
502 |
+
fn=lambda x: gr.update(visible=x),
|
503 |
+
inputs=use_url,
|
504 |
+
outputs=url_input,
|
505 |
+
)
|
506 |
+
|
507 |
+
# Image clear button
|
508 |
+
image_clear_button.click(
|
509 |
+
fn=lambda: (
|
510 |
+
None,
|
511 |
+
False,
|
512 |
+
"",
|
513 |
+
DEFAULT_CHECKPOINT,
|
514 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
515 |
+
None,
|
516 |
+
),
|
517 |
+
outputs=[
|
518 |
+
image_input,
|
519 |
+
use_url,
|
520 |
+
url_input,
|
521 |
+
image_model_checkpoint,
|
522 |
+
image_confidence_threshold,
|
523 |
+
image_output,
|
524 |
+
],
|
525 |
+
)
|
526 |
+
|
527 |
+
# Video clear button
|
528 |
+
video_clear_button.click(
|
529 |
+
fn=lambda: (
|
530 |
+
None,
|
531 |
+
DEFAULT_CHECKPOINT,
|
532 |
+
None,
|
533 |
+
"all",
|
534 |
+
DEFAULT_CONFIDENCE_THRESHOLD,
|
535 |
+
None,
|
536 |
+
),
|
537 |
+
outputs=[
|
538 |
+
video_input,
|
539 |
+
video_checkpoint,
|
540 |
+
video_tracker,
|
541 |
+
video_classes,
|
542 |
+
video_confidence_threshold,
|
543 |
+
video_output,
|
544 |
+
],
|
545 |
+
)
|
546 |
+
|
547 |
+
# Image detect button
|
548 |
+
image_detect_button.click(
|
549 |
+
fn=process_image,
|
550 |
+
inputs=[
|
551 |
+
image_model_checkpoint,
|
552 |
+
image_input,
|
553 |
+
url_input,
|
554 |
+
use_url,
|
555 |
+
image_confidence_threshold,
|
556 |
+
],
|
557 |
+
outputs=[image_output],
|
558 |
+
)
|
559 |
+
|
560 |
+
# Video detect button
|
561 |
+
video_detect_button.click(
|
562 |
+
fn=process_video,
|
563 |
+
inputs=[video_input, video_checkpoint, video_tracker, video_classes, video_confidence_threshold],
|
564 |
+
outputs=[video_output],
|
565 |
+
)
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
demo.queue(max_size=20).launch()
|