Ready for testing
Browse files- .gitignore +2 -3
- README.md +3 -3
- app.py +44 -50
- configs/{yolo8n-cpu.yaml β yolo8n-416.yaml} +0 -0
- configs/yolo8n-640.yaml +15 -0
- examples/images/road.jpg β downloads/yolo8n-640.onnx +2 -2
- examples/images/{airport.jpg β coast.jpg} +2 -2
- examples/images/{bay.jpg β forest.jpg} +2 -2
- examples/videos/dogs_running.mp4 +0 -3
- examples/videos/fast_and_furious.mp4 +0 -3
- examples/videos/{break_dance.mp4 β forest.mp4} +2 -2
- examples/videos/traffic.mp4 +0 -3
.gitignore
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
# Virtual environment
|
2 |
-
pesar_env/
|
3 |
-
|
4 |
# Byte-compiled / optimized / DLL files
|
5 |
__pycache__/
|
6 |
*.py[cod]
|
@@ -137,6 +134,8 @@ venv/
|
|
137 |
ENV/
|
138 |
env.bak/
|
139 |
venv.bak/
|
|
|
|
|
140 |
|
141 |
# Spyder project settings
|
142 |
.spyderproject
|
|
|
|
|
|
|
|
|
1 |
# Byte-compiled / optimized / DLL files
|
2 |
__pycache__/
|
3 |
*.py[cod]
|
|
|
134 |
ENV/
|
135 |
env.bak/
|
136 |
venv.bak/
|
137 |
+
pisar_env/
|
138 |
+
|
139 |
|
140 |
# Spyder project settings
|
141 |
.spyderproject
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
@@ -8,7 +8,7 @@ sdk_version: 5.29.0
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: agpl-3.0
|
11 |
-
short_description: '
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: PiSAR
|
3 |
+
emoji: π
|
4 |
colorFrom: green
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: agpl-3.0
|
11 |
+
short_description: 'Pipelines for Aerial Search and Rescue'
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -24,32 +24,19 @@ from utils import cfg, load_config, load_onnx_model
|
|
24 |
|
25 |
|
26 |
# Configuration constants
|
27 |
-
|
28 |
-
"yolo8n-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# "ustc-community/dfine-small-coco",
|
34 |
-
# "ustc-community/dfine-large-coco",
|
35 |
-
# "ustc-community/dfine-xlarge-coco",
|
36 |
-
# "ustc-community/dfine-small-obj365",
|
37 |
-
# "ustc-community/dfine-large-obj365",
|
38 |
-
# "ustc-community/dfine-xlarge-obj365",
|
39 |
-
# "ustc-community/dfine-small-obj2coco",
|
40 |
-
# "ustc-community/dfine-large-obj2coco-e25",
|
41 |
-
# "ustc-community/dfine-xlarge-obj2coco",
|
42 |
-
]
|
43 |
-
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
|
44 |
-
DEFAULT_CONFIDENCE_THRESHOLD = 0.3
|
45 |
|
46 |
TORCH_DTYPE = torch.float32
|
47 |
|
48 |
# Image
|
49 |
IMAGE_EXAMPLES = [
|
50 |
-
{"path": "./examples/images/
|
51 |
-
{"path": "./examples/images/
|
52 |
-
{"path": "./examples/images/airport.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
53 |
{
|
54 |
"path": None,
|
55 |
"use_url": True,
|
@@ -73,7 +60,7 @@ class TrackingAlgorithm:
|
|
73 |
TRACKERS = [None, TrackingAlgorithm.BYTETRACK, TrackingAlgorithm.DEEPSORT, TrackingAlgorithm.SORT]
|
74 |
VIDEO_EXAMPLES = [
|
75 |
{"path": "./examples/videos/dogs_running.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
76 |
-
{"path": "./examples/videos/
|
77 |
{"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
78 |
{"path": "./examples/videos/break_dance.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
79 |
]
|
@@ -93,16 +80,15 @@ logging.basicConfig(
|
|
93 |
logger = logging.getLogger(__name__)
|
94 |
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
return model, image_processor
|
101 |
|
102 |
|
103 |
-
# @spaces.GPU(duration=20)
|
104 |
def detect_objects(
|
105 |
-
|
|
|
106 |
images: List[np.ndarray] | np.ndarray,
|
107 |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
108 |
target_size: Optional[Tuple[int, int]] = None,
|
@@ -114,15 +100,20 @@ def detect_objects(
|
|
114 |
# model, image_processor = get_model_and_processor(checkpoint)
|
115 |
# model = model.to(device)
|
116 |
|
117 |
-
load_config(cfg, f'configs/{checkpoint}.yaml')
|
118 |
-
pipeline = build_pipeline(cfg.pipeline)
|
119 |
-
load_onnx_model(pipeline.detector, 'downloads/yolo8n-416.onnx')
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
121 |
if classes is not None:
|
122 |
-
wrong_classes = [cls for cls in classes if cls not in
|
123 |
if wrong_classes:
|
124 |
gr.Warning(f"Classes not found in model config: {wrong_classes}")
|
125 |
-
keep_ids = [
|
126 |
else:
|
127 |
keep_ids = None
|
128 |
|
@@ -142,16 +133,16 @@ def detect_objects(
|
|
142 |
# with torch.no_grad():
|
143 |
# outputs = model(**inputs)
|
144 |
|
145 |
-
|
146 |
for i in range(len(batch)):
|
147 |
img = batch[i]
|
148 |
output_ = pipeline(img)
|
149 |
-
|
150 |
"scores": torch.from_numpy(output_.confidence) if isinstance(output_.confidence, np.ndarray) else output_.confidence,
|
151 |
"labels": torch.from_numpy(output_.class_id) if isinstance(output_.class_id, np.ndarray) else output_.class_id,
|
152 |
"boxes": torch.from_numpy(output_.xyxy) if isinstance(output_.xyxy, np.ndarray) else output_.xyxy,
|
153 |
}
|
154 |
-
|
155 |
|
156 |
|
157 |
# postprocess outputs
|
@@ -163,16 +154,15 @@ def detect_objects(
|
|
163 |
# batch_results = image_processor.post_process_object_detection(
|
164 |
# outputs, target_sizes=target_sizes, threshold=confidence_threshold
|
165 |
# )
|
166 |
-
batch_results = outputs
|
167 |
|
168 |
results.extend(batch_results)
|
169 |
|
170 |
-
# move results to cpu
|
171 |
-
for i, result in enumerate(results):
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
|
177 |
# return results, model.config.id2label
|
178 |
return results, pipeline.detector.get_category_mapping()
|
@@ -193,9 +183,11 @@ def process_image(
|
|
193 |
|
194 |
if url:
|
195 |
image = load_image(url)
|
196 |
-
|
|
|
197 |
results, id2label = detect_objects(
|
198 |
-
|
|
|
199 |
images=[np.array(image)],
|
200 |
confidence_threshold=confidence_threshold,
|
201 |
)
|
@@ -313,9 +305,11 @@ def process_video(
|
|
313 |
else:
|
314 |
classes_list = None
|
315 |
|
|
|
316 |
results, id2label = detect_objects(
|
|
|
|
|
317 |
images=np.array(frames),
|
318 |
-
checkpoint=checkpoint,
|
319 |
confidence_threshold=confidence_threshold,
|
320 |
target_size=(target_height, target_width),
|
321 |
classes=classes_list,
|
@@ -368,7 +362,7 @@ def create_image_inputs() -> List[gr.components.Component]:
|
|
368 |
elem_classes="input-component",
|
369 |
),
|
370 |
gr.Dropdown(
|
371 |
-
choices=
|
372 |
label="Select Model Checkpoint",
|
373 |
value=DEFAULT_CHECKPOINT,
|
374 |
elem_classes="input-component",
|
@@ -394,7 +388,7 @@ def create_video_inputs() -> List[gr.components.Component]:
|
|
394 |
elem_classes="input-component",
|
395 |
),
|
396 |
gr.Dropdown(
|
397 |
-
choices=
|
398 |
label="Select Model Checkpoint",
|
399 |
value=DEFAULT_CHECKPOINT,
|
400 |
elem_classes="input-component",
|
|
|
24 |
|
25 |
|
26 |
# Configuration constants
|
27 |
+
DETECTORS = {
|
28 |
+
"yolo8n-640": 'downloads/yolo8n-640.onnx',
|
29 |
+
"yolo8n-416": 'downloads/yolo8n-416.onnx',
|
30 |
+
}
|
31 |
+
DEFAULT_CHECKPOINT = list(DETECTORS.keys())[0]
|
32 |
+
DEFAULT_CONFIDENCE_THRESHOLD = 0.6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
TORCH_DTYPE = torch.float32
|
35 |
|
36 |
# Image
|
37 |
IMAGE_EXAMPLES = [
|
38 |
+
{"path": "./examples/images/forest.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
39 |
+
{"path": "./examples/images/coast.jpg", "use_url": False, "url": "", "label": "Local Image"},
|
|
|
40 |
{
|
41 |
"path": None,
|
42 |
"use_url": True,
|
|
|
60 |
TRACKERS = [None, TrackingAlgorithm.BYTETRACK, TrackingAlgorithm.DEEPSORT, TrackingAlgorithm.SORT]
|
61 |
VIDEO_EXAMPLES = [
|
62 |
{"path": "./examples/videos/dogs_running.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
63 |
+
{"path": "./examples/videos/forest.mp4", "label": "Local Video", "tracker": TrackingAlgorithm.BYTETRACK, "classes": "car, truck, bus"},
|
64 |
{"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
65 |
{"path": "./examples/videos/break_dance.mp4", "label": "Local Video", "tracker": None, "classes": "all"},
|
66 |
]
|
|
|
80 |
logger = logging.getLogger(__name__)
|
81 |
|
82 |
|
83 |
+
def get_pipeline(config: dict, onnx_path: str):
|
84 |
+
pipeline = build_pipeline(config)
|
85 |
+
load_onnx_model(pipeline.detector, onnx_path)
|
86 |
+
return pipeline
|
|
|
87 |
|
88 |
|
|
|
89 |
def detect_objects(
|
90 |
+
config: dict,
|
91 |
+
onnx_path: str,
|
92 |
images: List[np.ndarray] | np.ndarray,
|
93 |
confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD,
|
94 |
target_size: Optional[Tuple[int, int]] = None,
|
|
|
100 |
# model, image_processor = get_model_and_processor(checkpoint)
|
101 |
# model = model.to(device)
|
102 |
|
103 |
+
# load_config(cfg, f'configs/{checkpoint}.yaml')
|
104 |
+
# pipeline = build_pipeline(cfg.pipeline)
|
105 |
+
# load_onnx_model(pipeline.detector, 'downloads/yolo8n-416.onnx')
|
106 |
+
# config.detector.thresholds.confidence = confidence_threshold
|
107 |
+
config.defrost()
|
108 |
+
config.detector.thresholds.confidence = confidence_threshold
|
109 |
+
config.freeze()
|
110 |
+
pipeline = get_pipeline(config, onnx_path)
|
111 |
+
detector_category_mapping = pipeline.detector.get_category_mapping()
|
112 |
if classes is not None:
|
113 |
+
wrong_classes = [cls for cls in classes if cls not in detector_category_mapping]
|
114 |
if wrong_classes:
|
115 |
gr.Warning(f"Classes not found in model config: {wrong_classes}")
|
116 |
+
keep_ids = [detector_category_mapping[cls] for cls in classes if cls in detector_category_mapping]
|
117 |
else:
|
118 |
keep_ids = None
|
119 |
|
|
|
133 |
# with torch.no_grad():
|
134 |
# outputs = model(**inputs)
|
135 |
|
136 |
+
batch_results = []
|
137 |
for i in range(len(batch)):
|
138 |
img = batch[i]
|
139 |
output_ = pipeline(img)
|
140 |
+
output = {
|
141 |
"scores": torch.from_numpy(output_.confidence) if isinstance(output_.confidence, np.ndarray) else output_.confidence,
|
142 |
"labels": torch.from_numpy(output_.class_id) if isinstance(output_.class_id, np.ndarray) else output_.class_id,
|
143 |
"boxes": torch.from_numpy(output_.xyxy) if isinstance(output_.xyxy, np.ndarray) else output_.xyxy,
|
144 |
}
|
145 |
+
batch_results.append(output)
|
146 |
|
147 |
|
148 |
# postprocess outputs
|
|
|
154 |
# batch_results = image_processor.post_process_object_detection(
|
155 |
# outputs, target_sizes=target_sizes, threshold=confidence_threshold
|
156 |
# )
|
|
|
157 |
|
158 |
results.extend(batch_results)
|
159 |
|
160 |
+
# # move results to cpu
|
161 |
+
# for i, result in enumerate(results):
|
162 |
+
# results[i] = {k: v.cpu() for k, v in result.items()}
|
163 |
+
# if keep_ids is not None:
|
164 |
+
# keep = torch.isin(results[i]["labels"], torch.tensor(keep_ids))
|
165 |
+
# results[i] = {k: v[keep] for k, v in results[i].items()}
|
166 |
|
167 |
# return results, model.config.id2label
|
168 |
return results, pipeline.detector.get_category_mapping()
|
|
|
183 |
|
184 |
if url:
|
185 |
image = load_image(url)
|
186 |
+
|
187 |
+
load_config(cfg, f'configs/{checkpoint}.yaml')
|
188 |
results, id2label = detect_objects(
|
189 |
+
config=cfg.pipeline,
|
190 |
+
onnx_path=DETECTORS[checkpoint],
|
191 |
images=[np.array(image)],
|
192 |
confidence_threshold=confidence_threshold,
|
193 |
)
|
|
|
305 |
else:
|
306 |
classes_list = None
|
307 |
|
308 |
+
load_config(cfg, f'configs/{checkpoint}.yaml')
|
309 |
results, id2label = detect_objects(
|
310 |
+
config=cfg.pipeline,
|
311 |
+
onnx_path=DETECTORS[checkpoint],
|
312 |
images=np.array(frames),
|
|
|
313 |
confidence_threshold=confidence_threshold,
|
314 |
target_size=(target_height, target_width),
|
315 |
classes=classes_list,
|
|
|
362 |
elem_classes="input-component",
|
363 |
),
|
364 |
gr.Dropdown(
|
365 |
+
choices=list(DETECTORS.keys()),
|
366 |
label="Select Model Checkpoint",
|
367 |
value=DEFAULT_CHECKPOINT,
|
368 |
elem_classes="input-component",
|
|
|
388 |
elem_classes="input-component",
|
389 |
),
|
390 |
gr.Dropdown(
|
391 |
+
choices=list(DETECTORS.keys()),
|
392 |
label="Select Model Checkpoint",
|
393 |
value=DEFAULT_CHECKPOINT,
|
394 |
elem_classes="input-component",
|
configs/{yolo8n-cpu.yaml β yolo8n-416.yaml}
RENAMED
File without changes
|
configs/yolo8n-640.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv8n + ByteTrack Configuration
|
2 |
+
pipeline:
|
3 |
+
detector:
|
4 |
+
model: yolov8n
|
5 |
+
categories: ['LightVehicle', 'Person', 'Building', 'UPole', 'Boat', 'Bike', 'Container', 'Truck', 'Gastank', 'Digger', 'Solarpanels', 'Bus']
|
6 |
+
thresholds:
|
7 |
+
confidence: 0.6
|
8 |
+
iou: 0.4
|
9 |
+
slicing:
|
10 |
+
overlap: 0.2
|
11 |
+
device: cpu
|
12 |
+
|
13 |
+
tracker:
|
14 |
+
algorithm: dummytrack
|
15 |
+
|
examples/images/road.jpg β downloads/yolo8n-640.onnx
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:346359fb811146dc1793406cbad1ac5f88dddce172276f24beae789e85d5efba
|
3 |
+
size 12259807
|
examples/images/{airport.jpg β coast.jpg}
RENAMED
File without changes
|
examples/images/{bay.jpg β forest.jpg}
RENAMED
File without changes
|
examples/videos/dogs_running.mp4
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:043c1a28bddcd9beeddbab946c38d1a91de2a18da3ae114d307cd01b30b64ca2
|
3 |
-
size 22119043
|
|
|
|
|
|
|
|
examples/videos/fast_and_furious.mp4
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5980eada9d80c65b4da5b536427ccf8ff8ea2707ee3e4aa52fb2c4e1b1979dae
|
3 |
-
size 16872922
|
|
|
|
|
|
|
|
examples/videos/{break_dance.mp4 β forest.mp4}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6e1f240ad106045504afbd114e79387cceb11877af61f759f5371c548b6dab6
|
3 |
+
size 14931145
|
examples/videos/traffic.mp4
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:71908c136bba6b50b9071fb2015553f651c91a7ee857924f33616c046011aaed
|
3 |
-
size 8591523
|
|
|
|
|
|
|
|