File size: 17,654 Bytes
0baa2ea
f8bfe92
e879014
104c61f
0baa2ea
104c61f
10f9e7a
a7dc920
104c61f
 
f8bfe92
2d7820e
e6d549b
e879014
e6d549b
e879014
 
21394c0
e6d549b
 
 
 
104c61f
f8bfe92
e6d549b
f8bfe92
e6d549b
 
5b89395
f8bfe92
e279cab
e6d549b
e279cab
21394c0
 
 
962c619
21394c0
 
 
 
 
 
503d0a1
f8bfe92
 
 
 
 
d3ee4aa
9780bbe
e6d549b
 
f8bfe92
104c61f
f8bfe92
e6d549b
f8bfe92
503d0a1
e6d549b
 
f8bfe92
 
1b59166
e6d549b
 
e879014
019391d
962c619
 
 
 
e6d549b
962c619
019391d
e6d549b
 
 
1b59166
e879014
e6d549b
 
 
 
e879014
 
2d7820e
21394c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962c619
21394c0
 
 
 
 
 
 
 
17fd0e1
21394c0
 
 
 
 
 
962c619
21394c0
 
 
 
e879014
e6d549b
 
 
87f378f
e6d549b
 
 
 
 
6339e96
 
e6d549b
 
 
6339e96
 
 
e6d549b
 
 
1b59166
962c619
 
e3677e5
e6d549b
f8bfe92
e6d549b
962c619
e6d549b
962c619
 
 
 
 
e6d549b
 
 
 
 
f8bfe92
e279cab
1b59166
e6d549b
e279cab
e6d549b
 
 
f8bfe92
21394c0
e6d549b
e279cab
cd58f1c
e6d549b
 
 
 
 
1b59166
f8bfe92
1b59166
 
 
 
f8bfe92
1b59166
 
 
 
f8bfe92
e6d549b
a7dc920
 
e6d549b
 
 
 
 
a7dc920
e6d549b
 
104c61f
e6d549b
 
 
 
 
 
 
 
 
104c61f
e6d549b
 
 
 
 
104c61f
e6d549b
f8bfe92
eeffd5a
104c61f
 
 
6ed37fb
 
 
 
5065872
104c61f
26b7e7c
c59ef57
104c61f
26b7e7c
c59ef57
26b7e7c
5065872
26b7e7c
c59ef57
6ed37fb
 
c677ccf
06380b2
6ed37fb
f8bfe92
 
6ed37fb
26b7e7c
6ed37fb
06380b2
2027ec3
3f7aef0
26b7e7c
5065872
6ed37fb
10f9e7a
6ed37fb
5065872
6ed37fb
 
104c61f
 
6ed37fb
c677ccf
6ed37fb
 
26b7e7c
104c61f
 
 
5065872
6ed37fb
 
c677ccf
06380b2
5065872
 
26b7e7c
6ed37fb
 
 
 
 
 
 
a09e159
104c61f
 
 
 
 
 
 
 
 
 
6ed37fb
104c61f
 
 
 
 
 
 
 
6ed37fb
 
26b7e7c
6ed37fb
 
104c61f
 
 
 
 
 
26b7e7c
6ed37fb
c677ccf
5065872
6ed37fb
c677ccf
5065872
c677ccf
 
6ed37fb
c677ccf
 
26b7e7c
 
 
c677ccf
 
6ed37fb
 
c677ccf
26b7e7c
c677ccf
 
26b7e7c
c677ccf
5065872
26b7e7c
6ed37fb
5065872
6ed37fb
26b7e7c
 
 
 
 
c677ccf
6ed37fb
 
 
 
5065872
6ed37fb
 
 
 
c677ccf
 
 
 
6ed37fb
7d50827
bbca9bf
 
 
464ab01
bbca9bf
 
 
 
 
 
 
 
c677ccf
 
c59ef57
c677ccf
6ed37fb
c677ccf
104c61f
 
 
5065872
 
c677ccf
104c61f
c677ccf
e6d549b
c677ccf
104c61f
5065872
26b7e7c
104c61f
5065872
26b7e7c
 
5065872
26b7e7c
5065872
 
104c61f
5065872
 
104c61f
 
 
5065872
104c61f
 
 
5065872
104c61f
26b7e7c
6ed37fb
104c61f
e6d549b
 
 
2e2232b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import os
import re
from typing import Literal, TypedDict, get_args

import gradio as gr
import pandas as pd
import requests
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langgraph.graph import END, StateGraph

from helpers import fetch_task_attachment, get_prompt, sniff_excel_type
from tools import (
    analyze_excel_file,
    calculator,
    run_py,
    transcribe_via_whisper,
    vision_task,
    web_multi_search,
    wiki_search,
    youtube_transcript,
)

# --------------------------------------------------------------------------- #
#                              CONFIGURATION                                  #
# --------------------------------------------------------------------------- #
DEFAULT_API_URL: str = "https://agents-course-unit4-scoring.hf.space"
MODEL_NAME: str = "o4-mini"  # "gpt-4.1-mini"
TEMPERATURE: float = 0.1

# --------------------------------------------------------------------------- #
#                           QUESTION  CLASSIFIER                               #
# --------------------------------------------------------------------------- #
_LABELS = Literal[
    "math",
    "youtube",
    "image",
    "code",
    "excel",
    "audio",
    "general",
]


# --------------------------------------------------------------------------- #
# -------------------------------  AGENT STATE  ----------------------------- #
# --------------------------------------------------------------------------- #
class AgentState(TypedDict):
    question: str
    label: str
    context: str
    answer: str
    task_id: str | None = None


# --------------------------------------------------------------------------- #
#                         NODES  (LangGraph  functions)                        #
# --------------------------------------------------------------------------- #

_llm_router = ChatOpenAI(model=MODEL_NAME)
_llm_answer = ChatOpenAI(model=MODEL_NAME)


def route_question(state: AgentState) -> AgentState:  # noqa: D401
    """Label the task so we know which toolchain to invoke."""
    question = state["question"]

    label_values = set(get_args(_LABELS))  # -> ("math", "youtube", ...)
    prompt = get_prompt(
        prompt_key="router",
        question=question,
        labels=", ".join(repr(v) for v in label_values),
    )
    resp = _llm_router.invoke(prompt).content.strip().lower()
    state["label"] = resp if resp in label_values else "general"
    return state


def invoke_tools_context(state: AgentState) -> AgentState:
    question, label, task_id = state["question"], state["label"], state["task_id"]

    matched_pattern = r"https?://\S+"
    matched_obj = re.search(matched_pattern, question)

    # ---- attachment detection ------------------------------------------------
    if task_id:
        blob, ctype = fetch_task_attachment(api_url=DEFAULT_API_URL, task_id=task_id)

        if any([blob, ctype]):
            print(f"[DEBUG] attachment type={ctype} ")
            # ── Python code ------------------------------------------------------
            if "python" in ctype:
                print("[DEBUG] Working with a Python attachment file")
                state["answer"] = run_py.invoke({"code": blob.decode("utf-8")})
                state["label"] = "code"
                return state

            # ── Excel / CSV ------------------------------------------------------
            # 1) Header hints
            header_says_sheet = any(key in ctype for key in ("excel", "sheet", "csv"))
            # 2) Magic-number sniff (works when ctype is application/octet-stream)
            blob_says_sheet = sniff_excel_type(blob) in {"xlsx", "xls", "csv"}

            if header_says_sheet or blob_says_sheet:
                if blob_says_sheet:
                    print(f"[DEBUG] octet-stream sniffed as {sniff_excel_type(blob)}")

                print("[DEBUG] Working with a Excel/CSV attachment file")
                state["answer"] = analyze_excel_file.invoke(
                    {"xls_bytes": blob, "question": question}
                )
                state["label"] = "excel"
                return state

            # ── Audio --------------------------------------------------------
            if "audio" in ctype:
                print("[DEBUG] Working with an audio attachment file")
                state["context"] = transcribe_via_whisper.invoke({"audio_bytes": blob})
                state["label"] = "audio"
                return state

            # ── Image --------------------------------------------------------
            if "image" in ctype:
                print("[DEBUG] Working with an image attachment file")
                state["answer"] = vision_task.invoke(
                    {"img_bytes": blob, "question": question}
                )
                state["label"] = "image"
                return state

    if label == "math":
        print("[TOOL] calculator")
        expr = re.sub(r"\s+", "", question)
        state["answer"] = calculator.invoke({"expression": expr})
    elif label == "youtube" and matched_obj:
        print("[TOOL] youtube_transcript")
        if matched_obj:
            url = matched_obj[0]
            state["context"] = youtube_transcript.invoke({"url": url})
    elif label == "search":
        print("[TOOL] web search")
        search_json = web_multi_search.invoke({"query": question})
        wiki_text = wiki_search.invoke({"query": question})
        state["context"] = f"{search_json}\n\n{wiki_text}"
    else:
        print("[TOOL] reasoning only (no search)")
        state["context"] = ""
    return state


def synthesize_response(state: AgentState) -> AgentState:
    # Skip LLM for deterministic labels or tasks that already used LLMs
    if state["label"] in {"code", "excel", "image", "math"}:
        print(f"[DEBUG] ANSWER ({state['label']}) >>> {state['answer']}")
        return state

    prompt = [
        SystemMessage(content=get_prompt("final_llm_system")),
        HumanMessage(
            content=get_prompt(
                prompt_key="final_llm_user",
                question=state["question"],
                context=state["context"],
            )
        ),
    ]
    raw = _llm_answer.invoke(prompt).content.strip()
    state["answer"] = raw
    return state


def format_output(state: AgentState) -> AgentState:
    txt = re.sub(r"^(final answer:?\s*)", "", state["answer"], flags=re.I).strip()

    # If question demands a single token (first name / one word), enforce it
    if any(kw in state["question"].lower() for kw in ["first name", "single word"]):
        txt = txt.split(" ")[0]

    state["answer"] = txt.rstrip(".")
    return state


# --------------------------------------------------------------------------- #
#                              BUILD  THE  GRAPH                              #
# --------------------------------------------------------------------------- #
def build_graph() -> StateGraph:
    g = StateGraph(AgentState)
    g.set_entry_point("route_question")

    g.add_node("route_question", route_question)
    g.add_node("invoke_tools", invoke_tools_context)
    g.add_node("synthesize_response", synthesize_response)
    g.add_node("format_output", format_output)

    g.add_edge("route_question", "invoke_tools")
    g.add_edge("invoke_tools", "synthesize_response")
    g.add_edge("synthesize_response", "format_output")
    g.add_edge("format_output", END)

    return g.compile()


# --------------------------------------------------------------------------- #
# -------------------------------  GAIA AGENT  ------------------------------ #
# --------------------------------------------------------------------------- #
class GAIAAgent:
    """Callable wrapper used by run_and_submit_all."""

    def __init__(self) -> None:
        self.graph = build_graph()

    def __call__(self, question: str, task_id: str | None = None) -> str:
        state: AgentState = {
            "question": question,
            "label": "general",
            "context": "",
            "answer": "",
            "task_id": task_id,
        }
        final = self.graph.invoke(state)

        # ── Debug trace ───────────────────────────────────────────────
        route = final["label"]
        llm_used = route != "math"  # math path skips the generation LLM
        print(f"[DEBUG] route='{route}' | LLM_used={llm_used}")
        # ─────────────────────────────────────────────────────────────

        return final["answer"]


def run_and_submit_all(
    profile: gr.OAuthProfile | None,
) -> tuple[str, pd.DataFrame | None]:
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")  # Get the SPACE_ID for sending link to the code

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = GAIAAgent()
        print("GAIA Agent initialized successfully")
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question=question_text, task_id=task_id)
            answers_payload.append(
                {"task_id": task_id, "submitted_answer": submitted_answer}
            )
            results_log.append(
                {
                    "Task ID": task_id,
                    "Question": question_text,
                    "Submitted Answer": submitted_answer,
                }
            )
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append(
                {
                    "Task ID": task_id,
                    "Question": question_text,
                    "Submitted Answer": f"AGENT ERROR: {e}",
                }
            )

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload,
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(
        label="Run Status / Submission Result", lines=5, interactive=False
    )
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])


if __name__ == "__main__":
    print("\n" + "-" * 30 + " App Starting " + "-" * 30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")  # Get SPACE_ID at startup

    if space_host_startup:
        print(f"βœ… SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:  # Print repo URLs if SPACE_ID is found
        print(f"βœ… SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(
            f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
        )
    else:
        print(
            "ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
        )

    print("-" * (60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)


## For Local testing
# if __name__ == "__main__":
#     agent = GAIAAgent()
#     while True:
#         try:
#             q = input("\nEnter question (or blank to quit): ")
#         except KeyboardInterrupt:
#             break
#         if not q.strip():
#             break
#         print("Answer:", agent(q))