Spaces:
Sleeping
Sleeping
File size: 17,654 Bytes
0baa2ea f8bfe92 e879014 104c61f 0baa2ea 104c61f 10f9e7a a7dc920 104c61f f8bfe92 2d7820e e6d549b e879014 e6d549b e879014 21394c0 e6d549b 104c61f f8bfe92 e6d549b f8bfe92 e6d549b 5b89395 f8bfe92 e279cab e6d549b e279cab 21394c0 962c619 21394c0 503d0a1 f8bfe92 d3ee4aa 9780bbe e6d549b f8bfe92 104c61f f8bfe92 e6d549b f8bfe92 503d0a1 e6d549b f8bfe92 1b59166 e6d549b e879014 019391d 962c619 e6d549b 962c619 019391d e6d549b 1b59166 e879014 e6d549b e879014 2d7820e 21394c0 962c619 21394c0 17fd0e1 21394c0 962c619 21394c0 e879014 e6d549b 87f378f e6d549b 6339e96 e6d549b 6339e96 e6d549b 1b59166 962c619 e3677e5 e6d549b f8bfe92 e6d549b 962c619 e6d549b 962c619 e6d549b f8bfe92 e279cab 1b59166 e6d549b e279cab e6d549b f8bfe92 21394c0 e6d549b e279cab cd58f1c e6d549b 1b59166 f8bfe92 1b59166 f8bfe92 1b59166 f8bfe92 e6d549b a7dc920 e6d549b a7dc920 e6d549b 104c61f e6d549b 104c61f e6d549b 104c61f e6d549b f8bfe92 eeffd5a 104c61f 6ed37fb 5065872 104c61f 26b7e7c c59ef57 104c61f 26b7e7c c59ef57 26b7e7c 5065872 26b7e7c c59ef57 6ed37fb c677ccf 06380b2 6ed37fb f8bfe92 6ed37fb 26b7e7c 6ed37fb 06380b2 2027ec3 3f7aef0 26b7e7c 5065872 6ed37fb 10f9e7a 6ed37fb 5065872 6ed37fb 104c61f 6ed37fb c677ccf 6ed37fb 26b7e7c 104c61f 5065872 6ed37fb c677ccf 06380b2 5065872 26b7e7c 6ed37fb a09e159 104c61f 6ed37fb 104c61f 6ed37fb 26b7e7c 6ed37fb 104c61f 26b7e7c 6ed37fb c677ccf 5065872 6ed37fb c677ccf 5065872 c677ccf 6ed37fb c677ccf 26b7e7c c677ccf 6ed37fb c677ccf 26b7e7c c677ccf 26b7e7c c677ccf 5065872 26b7e7c 6ed37fb 5065872 6ed37fb 26b7e7c c677ccf 6ed37fb 5065872 6ed37fb c677ccf 6ed37fb 7d50827 bbca9bf 464ab01 bbca9bf c677ccf c59ef57 c677ccf 6ed37fb c677ccf 104c61f 5065872 c677ccf 104c61f c677ccf e6d549b c677ccf 104c61f 5065872 26b7e7c 104c61f 5065872 26b7e7c 5065872 26b7e7c 5065872 104c61f 5065872 104c61f 5065872 104c61f 5065872 104c61f 26b7e7c 6ed37fb 104c61f e6d549b 2e2232b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import os
import re
from typing import Literal, TypedDict, get_args
import gradio as gr
import pandas as pd
import requests
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langgraph.graph import END, StateGraph
from helpers import fetch_task_attachment, get_prompt, sniff_excel_type
from tools import (
analyze_excel_file,
calculator,
run_py,
transcribe_via_whisper,
vision_task,
web_multi_search,
wiki_search,
youtube_transcript,
)
# --------------------------------------------------------------------------- #
# CONFIGURATION #
# --------------------------------------------------------------------------- #
DEFAULT_API_URL: str = "https://agents-course-unit4-scoring.hf.space"
MODEL_NAME: str = "o4-mini" # "gpt-4.1-mini"
TEMPERATURE: float = 0.1
# --------------------------------------------------------------------------- #
# QUESTION CLASSIFIER #
# --------------------------------------------------------------------------- #
_LABELS = Literal[
"math",
"youtube",
"image",
"code",
"excel",
"audio",
"general",
]
# --------------------------------------------------------------------------- #
# ------------------------------- AGENT STATE ----------------------------- #
# --------------------------------------------------------------------------- #
class AgentState(TypedDict):
question: str
label: str
context: str
answer: str
task_id: str | None = None
# --------------------------------------------------------------------------- #
# NODES (LangGraph functions) #
# --------------------------------------------------------------------------- #
_llm_router = ChatOpenAI(model=MODEL_NAME)
_llm_answer = ChatOpenAI(model=MODEL_NAME)
def route_question(state: AgentState) -> AgentState: # noqa: D401
"""Label the task so we know which toolchain to invoke."""
question = state["question"]
label_values = set(get_args(_LABELS)) # -> ("math", "youtube", ...)
prompt = get_prompt(
prompt_key="router",
question=question,
labels=", ".join(repr(v) for v in label_values),
)
resp = _llm_router.invoke(prompt).content.strip().lower()
state["label"] = resp if resp in label_values else "general"
return state
def invoke_tools_context(state: AgentState) -> AgentState:
question, label, task_id = state["question"], state["label"], state["task_id"]
matched_pattern = r"https?://\S+"
matched_obj = re.search(matched_pattern, question)
# ---- attachment detection ------------------------------------------------
if task_id:
blob, ctype = fetch_task_attachment(api_url=DEFAULT_API_URL, task_id=task_id)
if any([blob, ctype]):
print(f"[DEBUG] attachment type={ctype} ")
# ββ Python code ------------------------------------------------------
if "python" in ctype:
print("[DEBUG] Working with a Python attachment file")
state["answer"] = run_py.invoke({"code": blob.decode("utf-8")})
state["label"] = "code"
return state
# ββ Excel / CSV ------------------------------------------------------
# 1) Header hints
header_says_sheet = any(key in ctype for key in ("excel", "sheet", "csv"))
# 2) Magic-number sniff (works when ctype is application/octet-stream)
blob_says_sheet = sniff_excel_type(blob) in {"xlsx", "xls", "csv"}
if header_says_sheet or blob_says_sheet:
if blob_says_sheet:
print(f"[DEBUG] octet-stream sniffed as {sniff_excel_type(blob)}")
print("[DEBUG] Working with a Excel/CSV attachment file")
state["answer"] = analyze_excel_file.invoke(
{"xls_bytes": blob, "question": question}
)
state["label"] = "excel"
return state
# ββ Audio --------------------------------------------------------
if "audio" in ctype:
print("[DEBUG] Working with an audio attachment file")
state["context"] = transcribe_via_whisper.invoke({"audio_bytes": blob})
state["label"] = "audio"
return state
# ββ Image --------------------------------------------------------
if "image" in ctype:
print("[DEBUG] Working with an image attachment file")
state["answer"] = vision_task.invoke(
{"img_bytes": blob, "question": question}
)
state["label"] = "image"
return state
if label == "math":
print("[TOOL] calculator")
expr = re.sub(r"\s+", "", question)
state["answer"] = calculator.invoke({"expression": expr})
elif label == "youtube" and matched_obj:
print("[TOOL] youtube_transcript")
if matched_obj:
url = matched_obj[0]
state["context"] = youtube_transcript.invoke({"url": url})
elif label == "search":
print("[TOOL] web search")
search_json = web_multi_search.invoke({"query": question})
wiki_text = wiki_search.invoke({"query": question})
state["context"] = f"{search_json}\n\n{wiki_text}"
else:
print("[TOOL] reasoning only (no search)")
state["context"] = ""
return state
def synthesize_response(state: AgentState) -> AgentState:
# Skip LLM for deterministic labels or tasks that already used LLMs
if state["label"] in {"code", "excel", "image", "math"}:
print(f"[DEBUG] ANSWER ({state['label']}) >>> {state['answer']}")
return state
prompt = [
SystemMessage(content=get_prompt("final_llm_system")),
HumanMessage(
content=get_prompt(
prompt_key="final_llm_user",
question=state["question"],
context=state["context"],
)
),
]
raw = _llm_answer.invoke(prompt).content.strip()
state["answer"] = raw
return state
def format_output(state: AgentState) -> AgentState:
txt = re.sub(r"^(final answer:?\s*)", "", state["answer"], flags=re.I).strip()
# If question demands a single token (first name / one word), enforce it
if any(kw in state["question"].lower() for kw in ["first name", "single word"]):
txt = txt.split(" ")[0]
state["answer"] = txt.rstrip(".")
return state
# --------------------------------------------------------------------------- #
# BUILD THE GRAPH #
# --------------------------------------------------------------------------- #
def build_graph() -> StateGraph:
g = StateGraph(AgentState)
g.set_entry_point("route_question")
g.add_node("route_question", route_question)
g.add_node("invoke_tools", invoke_tools_context)
g.add_node("synthesize_response", synthesize_response)
g.add_node("format_output", format_output)
g.add_edge("route_question", "invoke_tools")
g.add_edge("invoke_tools", "synthesize_response")
g.add_edge("synthesize_response", "format_output")
g.add_edge("format_output", END)
return g.compile()
# --------------------------------------------------------------------------- #
# ------------------------------- GAIA AGENT ------------------------------ #
# --------------------------------------------------------------------------- #
class GAIAAgent:
"""Callable wrapper used by run_and_submit_all."""
def __init__(self) -> None:
self.graph = build_graph()
def __call__(self, question: str, task_id: str | None = None) -> str:
state: AgentState = {
"question": question,
"label": "general",
"context": "",
"answer": "",
"task_id": task_id,
}
final = self.graph.invoke(state)
# ββ Debug trace βββββββββββββββββββββββββββββββββββββββββββββββ
route = final["label"]
llm_used = route != "math" # math path skips the generation LLM
print(f"[DEBUG] route='{route}' | LLM_used={llm_used}")
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
return final["answer"]
def run_and_submit_all(
profile: gr.OAuthProfile | None,
) -> tuple[str, pd.DataFrame | None]:
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = GAIAAgent()
print("GAIA Agent initialized successfully")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question=question_text, task_id=task_id)
answers_payload.append(
{"task_id": task_id, "submitted_answer": submitted_answer}
)
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
}
)
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}",
}
)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result", lines=5, interactive=False
)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"β
SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"β
SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
)
else:
print(
"βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
)
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
## For Local testing
# if __name__ == "__main__":
# agent = GAIAAgent()
# while True:
# try:
# q = input("\nEnter question (or blank to quit): ")
# except KeyboardInterrupt:
# break
# if not q.strip():
# break
# print("Answer:", agent(q))
|