File size: 10,274 Bytes
e6d549b
 
 
 
e879014
545e8ad
e6d549b
 
e879014
e6d549b
ce76bed
 
e6d549b
 
 
545e8ad
e6d549b
545e8ad
e6d549b
 
e3677e5
ce76bed
e6d549b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e879014
e3677e5
e6d549b
 
 
 
 
 
 
 
 
 
 
 
 
e879014
 
 
e6d549b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6339e96
 
 
 
 
 
e6d549b
6339e96
e6d549b
 
 
6339e96
 
 
e6d549b
6339e96
e6d549b
 
 
e3677e5
e6d549b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3677e5
e6d549b
 
 
 
 
 
 
 
 
 
ce76bed
 
 
e6d549b
545e8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d549b
545e8ad
 
 
 
 
 
 
 
 
 
e6d549b
545e8ad
 
962c619
545e8ad
 
 
 
 
 
 
 
 
 
 
 
e6d549b
e3677e5
e6d549b
 
 
 
 
 
 
e879014
 
 
 
 
 
 
e3677e5
e879014
 
 
 
e3677e5
e879014
 
 
 
962c619
 
e879014
962c619
e879014
e6d549b
e879014
e6d549b
e879014
 
 
 
e6d549b
e3677e5
e879014
 
 
 
 
ce76bed
 
e879014
 
 
 
 
 
ce76bed
 
e879014
962c619
ce76bed
962c619
 
 
ce76bed
 
e879014
962c619
ce76bed
 
962c619
ce76bed
 
 
 
 
 
 
 
 
 
 
e3677e5
ce76bed
e6d549b
 
 
 
 
 
 
545e8ad
e879014
 
 
e6d549b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import ast
import json
import operator
import re
import subprocess
from base64 import b64encode
from functools import lru_cache
from io import BytesIO
from tempfile import NamedTemporaryFile

import numpy as np
import pandas as pd
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from youtube_transcript_api import YouTubeTranscriptApi

from helpers import get_prompt, print_debug_trace

# --------------------------------------------------------------------------- #
#                       ARITHMETIC (SAFE CALCULATOR)                         #
# --------------------------------------------------------------------------- #
_ALLOWED_AST_OPS = {
    ast.Add: operator.add,
    ast.Sub: operator.sub,
    ast.Mult: operator.mul,
    ast.Div: operator.truediv,
    ast.Pow: operator.pow,
    ast.USub: operator.neg,
}


def _safe_eval(node: ast.AST) -> float | int | complex:
    """Recursively evaluate a *restricted* AST expression tree."""
    if isinstance(node, ast.Constant):
        return node.n
    if isinstance(node, ast.UnaryOp) and type(node.op) in _ALLOWED_AST_OPS:
        return _ALLOWED_AST_OPS[type(node.op)](_safe_eval(node.operand))
    if isinstance(node, ast.BinOp) and type(node.op) in _ALLOWED_AST_OPS:
        return _ALLOWED_AST_OPS[type(node.op)](
            _safe_eval(node.left), _safe_eval(node.right)
        )
    raise ValueError("Unsafe or unsupported expression")


@tool
def calculator(expression: str) -> str:
    """Safely evaluate basic arithmetic expressions (no variables, functions)."""
    try:
        tree = ast.parse(expression, mode="eval")
        value = _safe_eval(tree.body)
        return str(value)
    except Exception as exc:
        print_debug_trace(exc, "Calculator")
        return f"calc_error:{exc}"


# --------------------------------------------------------------------------- #
#                             WEB  &  WIKI  SEARCH                           #
# --------------------------------------------------------------------------- #
@lru_cache(maxsize=256)
def _ddg_search(query: str, k: int = 6) -> list[dict[str, str]]:
    """Cached DuckDuckGo JSON search."""
    wrapper = DuckDuckGoSearchAPIWrapper(max_results=k)
    hits = wrapper.results(query)
    return [
        {
            "title": hit.get("title", "")[:500],
            "snippet": hit.get("snippet", "")[:750],
            "link": hit.get("link", "")[:300],
        }
        for hit in hits[:k]
    ]


@tool
def web_multi_search(query: str, k: int = 6) -> str:
    """Run DuckDuckGo → Tavily fallback search. Returns JSON list[dict]."""
    try:
        hits = _ddg_search(query, k)
        if hits:
            return json.dumps(hits, ensure_ascii=False)
    except Exception:  # fall through to Tavily
        pass

    try:
        tavily_results = TavilySearchResults(
            max_results=5,
            # include_answer=True,
            # search_depth="advanced",
        )
        search_result = tavily_results.invoke({"query": query})
        print(
            f"[TOOL] TAVILY search is triggered with following response: {search_result}"
        )
        formatted = [
            {
                "title": d.get("title", "")[:500],
                "snippet": d.get("content", "")[:750],
                "link": d.get("url", "")[:300],
            }
            for d in search_result
        ]
        return json.dumps(formatted, ensure_ascii=False)
    except Exception as exc:
        print_debug_trace(exc, "Multi Search")
        return f"search_error:{exc}"


@tool
def wiki_search(query: str, max_pages: int = 2) -> str:
    """Lightweight wrapper on WikipediaLoader; returns concatenated page texts."""
    print(f"[TOOL] wiki_search called with query: {query}")
    docs = WikipediaLoader(query=query, load_max_docs=max_pages).load()
    joined = "\n\n---\n\n".join(d.page_content for d in docs)
    return joined[:8_000]  # simple guardrail – stay within context window


# --------------------------------------------------------------------------- #
#                               YOUTUBE  TRANSCRIPT                          #
# --------------------------------------------------------------------------- #
@tool
def youtube_transcript(url: str, chars: int = 10_000) -> str:
    """Fetch full YouTube transcript (first *chars* characters)."""
    video_id_match = re.search(r"[?&]v=([A-Za-z0-9_\-]{11})", url)
    if not video_id_match:
        return "yt_error:id_not_found"
    try:
        transcript = YouTubeTranscriptApi.get_transcript(video_id_match.group(1))
        text = " ".join(piece["text"] for piece in transcript)
        return text[:chars]
    except Exception as exc:
        print_debug_trace(exc, "YouTube")
        return f"yt_error:{exc}"


# --------------------------------------------------------------------------- #
#                                IMAGE  DESCRIPTION                           #
# --------------------------------------------------------------------------- #

# Instantiate a lightweight CLIP‑based zero‑shot image classifier (runs on CPU)
### The model 'openai/clip-vit-base-patch32' is a vision transformer (ViT) model trained as part of OpenAI’s CLIP project.
### It performs zero-shot image classification by mapping images and labels into the same embedding space.
# _image_pipe = pipeline(
#     "image-classification", model="openai/clip-vit-base-patch32", device="cpu"
# )

# @tool
# def image_describe(img_bytes: bytes, top_k: int = 3) -> str:
#     """Return the top-k CLIP labels for an image supplied as raw bytes.

#     typical result for a random cat photo can be:
#     [
#         {'label': 'tabby, tabby cat', 'score': 0.41},
#         {'label': 'tiger cat', 'score': 0.24},
#         {'label': 'Egyptian cat', 'score': 0.22}
#     ]
#     """

#     try:
#         labels = _image_pipe(BytesIO(img_bytes))[:top_k]
#         return ", ".join(f"{d['label']} (score={d['score']:.2f})" for d in labels)
#     except Exception as exc:
#         return f"img_error:{exc}"


@tool
def vision_task(img_bytes: bytes, question: str) -> str:
    """
    Pass the user's question AND the referenced image to a multimodal LLM and
    return its first line of text as the answer.  No domain assumptions made.
    """
    vision_llm = ChatOpenAI(
        model="gpt-4o-mini",  # set OPENAI_API_KEY in env
        temperature=0,
        max_tokens=64,
    )
    try:
        b64 = b64encode(img_bytes).decode()
        messages = [
            SystemMessage(content=get_prompt(prompt_key="vision_system")),
            HumanMessage(
                content=[
                    {"type": "text", "text": question.strip()},
                    {
                        "type": "image_url",
                        "image_url": {"url": f"data:image/png;base64,{b64}"},
                    },
                ]
            ),
        ]
        reply = vision_llm.invoke(messages).content.strip()
        return reply
    except Exception as exc:
        print_debug_trace(exc, "vision")
        return f"img_error:{exc}"


# --------------------------------------------------------------------------- #
#                                 FILE  UTILS                                 #
# --------------------------------------------------------------------------- #
@tool
def run_py(code: str) -> str:
    """Execute Python code in a sandboxed subprocess and return last stdout line."""
    try:
        with NamedTemporaryFile(delete=False, suffix=".py", mode="w") as f:
            f.write(code)
            path = f.name
        proc = subprocess.run(
            ["python", path], capture_output=True, text=True, timeout=45
        )
        out = proc.stdout.strip().splitlines()
        return out[-1] if out else ""
    except Exception as exc:
        print_debug_trace(exc, "run_py")
        return f"py_error:{exc}"


@tool
def transcribe_via_whisper(audio_bytes: bytes) -> str:
    """Transcribe audio with Whisper (CPU)."""
    with NamedTemporaryFile(suffix=".mp3", delete=False) as f:
        f.write(audio_bytes)
        path = f.name
    try:
        import whisper  # openai-whisper

        model = whisper.load_model("base")
        output = model.transcribe(path)["text"].strip()
        print(f"[DEBUG] Whisper transcript (first 200 chars): {output[:200]}")
        return output
    except Exception as exc:
        print_debug_trace(exc, "Whisper")
        return f"asr_error:{exc}"


@tool
def analyze_excel_file(xls_bytes: bytes, question: str) -> str:
    "Analyze Excel or CSV file by passing the data preview to LLM and getting the Python Pandas operation to run"
    llm = ChatOpenAI(model="gpt-4o-mini", temperature=0, max_tokens=64)

    try:
        df = pd.read_excel(BytesIO(xls_bytes))
    except Exception:
        df = pd.read_csv(BytesIO(xls_bytes))

    for col in df.select_dtypes(include="number").columns:
        df[col] = df[col].astype(float)

    # Ask the LLM for a single expression
    prompt = get_prompt(
        prompt_key="excel_system",
        question=question,
        preview=df.head(5).to_dict(orient="list"),
    )
    expr = llm.invoke(prompt).content.strip()

    # Run generated Pandas' one-line expression
    try:
        result = eval(expr, {"df": df, "pd": pd, "__builtins__": {}})
        # Normalize scalars to string
        if isinstance(result, np.generic):
            result = float(result)  # → plain Python float
            return f"{result:.2f}"  # or str(result) if no decimals needed

        # DataFrame / Series → single-line string
        return (
            result.to_string(index=False)
            if hasattr(result, "to_string")
            else str(result)
        )
    except Exception as e:
        print_debug_trace(e, "Excel")
        return f"eval_error:{e}"


__all__ = [
    "calculator",
    "web_multi_search",
    "wiki_search",
    "youtube_transcript",
    "vision_task",
    "run_py",
    "transcribe_via_whisper",
    "analyze_excel_file",
]