Spaces:
Sleeping
Sleeping
Essi
feat: enhance file handling capabilities with support for code execution, Excel analysis, and audio transcription
e879014
import os | |
import re | |
from typing import Literal, TypedDict, get_args | |
import gradio as gr | |
import pandas as pd | |
import requests | |
from langchain_core.messages import HumanMessage, SystemMessage | |
from langchain_openai import ChatOpenAI | |
from langgraph.graph import END, StateGraph | |
from tools import ( | |
analyze_excel_file, | |
calculator, | |
image_describe, | |
run_py, | |
transcribe_via_whisper, | |
web_multi_search, | |
wiki_search, | |
youtube_transcript, | |
) | |
# --------------------------------------------------------------------------- # | |
# CONFIGURATION # | |
# --------------------------------------------------------------------------- # | |
DEFAULT_API_URL: str = "https://agents-course-unit4-scoring.hf.space" | |
MODEL_NAME: str = "o4-mini" # "gpt-4.1-mini" | |
TEMPERATURE: float = 0.1 | |
_SYSTEM_PROMPT = """You are a precise research assistant. Return ONLY the literal answer - no preamble. | |
If the question asks for a *first name*, output the first given name only. | |
If the answer is numeric, output digits only (no commas, units, or words). | |
""" | |
# --------------------------------------------------------------------------- # | |
# QUESTION CLASSIFIER # | |
# --------------------------------------------------------------------------- # | |
_LABELS = Literal["math", "youtube", "image", "code", "excel", "audio", "general"] | |
_CLASSIFY_PROMPT = """You are a router that labels the user question with exactly one of the following categories: | |
{labels}. | |
User question: | |
{question} | |
Label: | |
""" | |
# --------------------------------------------------------------------------- # | |
# ------------------------------- AGENT STATE ----------------------------- # | |
# --------------------------------------------------------------------------- # | |
class AgentState(TypedDict): | |
question: str | |
label: _LABELS | |
context: str | |
answer: str | |
confidence: float | |
task_id: str | None = None | |
# --------------------------------------------------------------------------- # | |
# NODES (LangGraph functions) # | |
# --------------------------------------------------------------------------- # | |
_llm_router = ChatOpenAI(model=MODEL_NAME) | |
_llm_answer = ChatOpenAI(model=MODEL_NAME) | |
def classify(state: AgentState) -> AgentState: # noqa: D401 | |
"""Label the task so we know which toolchain to invoke.""" | |
question = state["question"] | |
values = get_args(_LABELS) # -> ("math", "youtube", ...) | |
parsed_labels = ", ".join(repr(v) for v in values) | |
resp = ( | |
_llm_router.invoke( | |
_CLASSIFY_PROMPT.format(question=question, labels=parsed_labels) | |
) | |
.content.strip() | |
.lower() | |
) | |
state["label"] = resp if resp in _LABELS else "general" | |
return state | |
def gather_context(state: AgentState) -> AgentState: | |
question, label, task_id = state["question"], state["label"], state["task_id"] | |
matched_pattern = r"https?://\S+" | |
matched_obj = re.search(matched_pattern, question) | |
# ---- attachment detection ------------------------------------------------ | |
if task_id: | |
file_url = f"{DEFAULT_API_URL}/files/{task_id}" | |
head = requests.head(file_url, timeout=10) | |
ctype = head.headers.get("content-type", "") | |
print(f"[DEBUG] attachment type={ctype} | url={file_url}") | |
if "python" in ctype or file_url.endswith(".py"): | |
code = requests.get(file_url, timeout=10).text | |
state["answer"] = run_py.invoke({"code": code}) | |
state["label"] = "code" | |
return state | |
if "excel" in ctype or file_url.endswith((".xlsx", ".csv")): | |
blob = requests.get(file_url, timeout=10).content | |
state["context"] = analyze_excel_file.invoke( | |
{"xls_bytes": blob, "question": question} | |
) | |
state["label"] = "excel" | |
return state | |
if "audio" in ctype or file_url.endswith(".mp3"): | |
blob = requests.get(file_url, timeout=10).content | |
state["context"] = transcribe_via_whisper.invoke({"mp3_bytes": blob}) | |
state["label"] = "audio" | |
return state | |
if label == "math": | |
print("[TOOL] calculator") | |
expr = re.sub(r"\s+", "", question) | |
state["context"] = calculator.invoke({"expression": expr}) | |
elif label == "youtube" and matched_obj: | |
print("[TOOL] youtube_transcript") | |
if matched_obj: | |
url = matched_obj[0] | |
state["context"] = youtube_transcript.invoke({"url": url}) | |
elif label == "image" and matched_obj: | |
print("[TOOL] image") | |
if matched_obj: | |
url = matched_obj[0] | |
state["context"] = image_describe.invoke({"image_url": url}) | |
else: # general | |
print("[TOOL] general") | |
search_json = web_multi_search.invoke({"query": question}) | |
wiki_text = wiki_search.invoke({"query": question}) | |
state["context"] = f"{search_json}\n\n{wiki_text}" | |
return state | |
def generate_answer(state: AgentState) -> AgentState: | |
# Skip LLM for deterministic labels | |
if state["label"] in {"math", "code", "excel"}: | |
state["confidence"] = 0.9 | |
return state | |
prompt = [ | |
SystemMessage(content=_SYSTEM_PROMPT), | |
HumanMessage( | |
content=f"Question: {state['question']}\n\nContext:\n{state['context']}\n\nAnswer:" | |
), | |
] | |
raw = _llm_answer.invoke(prompt).content.strip() | |
state["answer"] = raw | |
state["confidence"] = 0.5 | |
return state | |
def validate(state: AgentState) -> AgentState: | |
"""Simple format + confidence gate.""" | |
txt = re.sub(r"^(final answer:?\s*)", "", state["answer"], flags=re.I).strip() | |
# If question demands a single token (first name / one word), enforce it | |
if any(kw in state["question"].lower() for kw in ["first name", "single word"]): | |
txt = txt.split(" ")[0] | |
txt = txt.rstrip(".") | |
if not txt or len(txt.split()) > 6 or state["confidence"] < 0.2: | |
txt = "I don’t know" | |
state["answer"] = txt | |
return state | |
# --------------------------------------------------------------------------- # | |
# BUILD THE GRAPH # | |
# --------------------------------------------------------------------------- # | |
def build_graph() -> StateGraph: | |
g = StateGraph(AgentState) | |
g.set_entry_point("classify") | |
g.add_node("classify", classify) | |
g.add_node("gather", gather_context) | |
g.add_node("generate", generate_answer) | |
g.add_node("validate", validate) | |
g.add_edge("classify", "gather") | |
g.add_edge("gather", "generate") | |
g.add_edge("generate", "validate") | |
g.add_edge("validate", END) | |
return g.compile() | |
# --------------------------------------------------------------------------- # | |
# ------------------------------- GAIA AGENT ------------------------------ # | |
# --------------------------------------------------------------------------- # | |
class GAIAAgent: | |
"""Callable wrapper used by run_and_submit_all.""" | |
def __init__(self) -> None: | |
self.graph = build_graph() | |
def __call__(self, question: str, task_id: str | None = None) -> str: | |
state: AgentState = { | |
"question": question, | |
"label": "general", | |
"context": "", | |
"answer": "", | |
"confidence": 0.0, | |
"task_id": task_id, | |
} | |
final = self.graph.invoke(state) | |
# ── Debug trace ─────────────────────────────────────────────── | |
route = final["label"] | |
llm_used = route != "math" # math path skips the generation LLM | |
print(f"[DEBUG] route='{route}' | LLM_used={llm_used}") | |
# ───────────────────────────────────────────────────────────── | |
return final["answer"] | |
def run_and_submit_all( | |
profile: gr.OAuthProfile | None, | |
) -> tuple[str, pd.DataFrame | None]: | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = GAIAAgent() | |
print("GAIA Agent initialized successfully") | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question=question_text, task_id=task_id) | |
answers_payload.append( | |
{"task_id": task_id, "submitted_answer": submitted_answer} | |
) | |
results_log.append( | |
{ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": submitted_answer, | |
} | |
) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append( | |
{ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"AGENT ERROR: {e}", | |
} | |
) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload, | |
} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox( | |
label="Run Status / Submission Result", lines=5, interactive=False | |
) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
print("\n" + "-" * 30 + " App Starting " + "-" * 30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print( | |
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main" | |
) | |
else: | |
print( | |
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined." | |
) | |
print("-" * (60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |
## For Local testing | |
# if __name__ == "__main__": | |
# agent = GAIAAgent() | |
# while True: | |
# try: | |
# q = input("\nEnter question (or blank to quit): ") | |
# except KeyboardInterrupt: | |
# break | |
# if not q.strip(): | |
# break | |
# print("Answer:", agent(q)) | |