GAIA-Agent / app.py
Essi
fix: update YouTube transcript retrieval method and clean up normalization logic in GAIAAgent
98f5036
raw
history blame
23.4 kB
import ast
import json
import operator
import os
import re
from functools import lru_cache
from io import BytesIO
from typing import TypedDict
from urllib import parse
import gradio as gr
import pandas as pd
import requests
from langchain.agents import tool
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langgraph.graph import END, StateGraph
from wikipedia import summary as wiki_summary
from youtube_transcript_api import YouTubeTranscriptApi
# --- Constants ---
DEFAULT_API_URL: str = "https://agents-course-unit4-scoring.hf.space"
OPENAI_MODEL_NAME: str = "gpt-4.1-mini-2025-04-14"
OPENAI_MODEL_TEMPERATURE: float = 0.1
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
# --------------------------------------------------------------------------- #
# ----------------------------- SAFE CALCULATOR --------------------------- #
# --------------------------------------------------------------------------- #
_ALLOWED_OPS = {
ast.Add: operator.add,
ast.Sub: operator.sub,
ast.Mult: operator.mul,
ast.Div: operator.truediv,
ast.Pow: operator.pow,
ast.USub: operator.neg,
}
def _safe_eval(node: ast.AST) -> int | float | complex:
if isinstance(node, ast.Constant): # literal number
return node.n
if isinstance(node, ast.UnaryOp) and type(node.op) in _ALLOWED_OPS:
return _ALLOWED_OPS[type(node.op)](_safe_eval(node.operand))
if isinstance(node, ast.BinOp) and type(node.op) in _ALLOWED_OPS:
return _ALLOWED_OPS[type(node.op)](
_safe_eval(node.left), _safe_eval(node.right)
)
raise ValueError("Unsafe or unsupported expression")
@tool
def calculator(expression: str) -> str:
"""Calculate mathematical expressions safely."""
try:
tree = ast.parse(expression, mode="eval")
return str(_safe_eval(tree.body))
except Exception as exc:
return f"calc_error:{exc}"
# --------------------------------------------------------------------------- #
# ----------------------------- WEB SEARCH --------------------------- #
# --------------------------------------------------------------------------- #
@lru_cache(maxsize=128)
def _search_duckduckgo(query: str, k: int = 5) -> list[dict[str, str]]:
"""Returns the top-k DuckDuckGo results as a list of {title, snippet, link}. Caches identical queries."""
try:
wrapper = DuckDuckGoSearchAPIWrapper(max_results=k)
raw = wrapper.results(query, max_results=k)
cleaned = []
for hit in raw[:k]:
cleaned.append(
{
"title": hit.get("title", "")[:120],
"snippet": hit.get("snippet", "")[:200],
"link": hit.get("link", "")[:200],
}
)
return cleaned
except Exception as e:
print(f"Search error: {e}")
return []
@tool
def web_multi_search(query: str, k: int = 5) -> str:
"""
Multi-backend search. JSON list of {title,snippet,link}.
Order: DuckDuckGo → Wikipedia → Google Lite JSON.
"""
try:
hits = _search_duckduckgo(query, k)
if hits:
return json.dumps(hits, ensure_ascii=False)
except Exception:
pass
# Fallback 2: Wikipedia single-article summary
try:
page = wiki_summary(query, sentences=2, auto_suggest=False)
return json.dumps([{"title": "Wikipedia", "snippet": page, "link": ""}])
except Exception:
pass
# Fallback 3: simple Google (no key) – tiny quota but better than nothing
try:
url = "https://r.jina.ai/http://api.allorigins.win/raw?url=" + parse.quote(
"https://lite.duckduckgo.com/lite/?q=" + query
)
txt = requests.get(url, timeout=10).text[:600]
return json.dumps(
[{"title": "Google-lite", "snippet": re.sub(r"<.*?>", "", txt), "link": ""}]
)
except Exception as e:
return f"search_error:{e}"
@tool
def youtube_transcript(url: str, num_first_chars: int = 10_000) -> str:
"""Returns the YouTube transcript (first `num_first_chars` characters only)."""
video_id = re.search(r"v=([A-Za-z0-9_\-]{11})", url)
if not video_id:
return "yt_error: id"
try:
ytt_api = YouTubeTranscriptApi()
fetched_transcript = ytt_api.fetch(video_id=video_id.group(1)).to_raw_data()
transcript_str = " ".join([x["text"] for x in fetched_transcript])
return transcript_str[:num_first_chars]
except Exception as e:
return f"yt_error: {e}"
# --------------------------------------------------------------------------- #
# HELPER FUNCTIONS #
# --------------------------------------------------------------------------- #
def _needs_calc(q: str) -> bool:
"""Check if question is purely mathematical."""
math_expr = re.compile(r"^\s*[\d\.\s\+\-\*/\(\)]+?\s*$")
return bool(math_expr.match(q))
def _extract_search_terms(question: str) -> str:
key = re.findall(r"[A-Za-z0-9']+", question.lower())
phrase = " ".join(key)
# if we lost critical tokens (length diff > 40 %), fallback to full q
return phrase if len(phrase) > 0.6 * len(question) else question
def _summarize_results(results_json: str, max_hits: int = 3) -> str:
"""Turn JSON list of hits into a compact text context for the LLM."""
if not results_json or not results_json.lstrip().startswith("["):
# Not JSON or empty → return raw text
return results_json
try:
hits = json.loads(results_json)[:max_hits]
context_parts = []
for i, h in enumerate(hits, 1):
title = h.get("title", "")
snippet = h.get("snippet", "")
if title or snippet:
context_parts.append(f"{i}. {title}: {snippet}")
return "\n".join(context_parts)
except Exception as e:
print(f"Error summarizing results: {e}")
return ""
# --------------------------------------------------------------------------- #
# ------------------------------- AGENT STATE ----------------------------- #
# --------------------------------------------------------------------------- #
class AgentState(TypedDict):
task_id: str
question: str
answer: str
search_results: str
context: str
reasoning_steps: list[str]
tools_used: list[str]
# --------------------------------------------------------------------------- #
# ------------------------------- GAIA AGENT ------------------------------ #
# --------------------------------------------------------------------------- #
class GAIAAgent:
"""LangGraph-powered agent targeting GAIA Level-1 tasks."""
SYSTEM_PROMPT = """You are an expert research assistant that provides accurate, concise answers.
IMPORTANT INSTRUCTIONS:
1. Answer with ONLY the specific information requested - no extra explanation
2. For numerical answers, provide just the number
3. For names, provide just the name(s)
4. For yes/no questions, answer "Yes" or "No"
5. Use the provided context carefully to find the exact answer
6. Be precise and factual
Return ONLY the final answer."""
def __init__(self) -> None:
try:
self.llm = ChatOpenAI(
model=OPENAI_MODEL_NAME,
temperature=OPENAI_MODEL_TEMPERATURE,
api_key=os.getenv("OPENAI_API_KEY"),
)
print(f"Model name: '{self.llm.model_name}'")
print(f"Model temperature: {self.llm.temperature}")
except Exception as e:
print(f"Warning: Could not initialize OpenAI model: {e}")
self.llm = None
# Following is defined for book-keeping purposes
self.tools = [web_multi_search, calculator, youtube_transcript]
self.graph = self._build_graph()
def _build_graph(self) -> StateGraph:
"""Build the LangGraph workflow."""
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("analyze_question", self._analyze_question)
workflow.add_node("route", self._route)
workflow.add_node("process_info", self._process_info)
workflow.add_node("generate_answer", self._generate_answer)
workflow.add_node("normalize_answer", self._normalize_answer)
# Add edges
workflow.set_entry_point("analyze_question")
workflow.add_edge("analyze_question", "route")
workflow.add_edge("route", "process_info")
workflow.add_edge("process_info", "generate_answer")
workflow.add_edge("generate_answer", "normalize_answer")
workflow.add_edge("normalize_answer", END)
return workflow.compile()
# ------------------ NODE IMPLEMENTATIONS ------------------ #
def _analyze_question(self, state: AgentState) -> AgentState:
q = state["question"]
state["reasoning_steps"] = [f"ANALYZE: {q}"]
return state
def _route(self, state: AgentState) -> AgentState:
question = state["question"]
# 1️⃣ Calculator path
if _needs_calc(question):
# 1) strip all whitespace
expr = re.sub(r"\s+", "", question)
# 2) remove ANY character that isn’t digit, dot, operator, or parenthesis
# (kills “USD”, “kg”, YouTube IDs, etc.)
expr = re.sub(r"[^\d\.\+\-\*/\(\)]", "", expr)
# 3) guard against empty string after cleaning
if expr:
result = calculator.invoke({"expression": expr})
state["answer"] = result
state["tools_used"].append("calculator")
state["reasoning_steps"].append(f"CALCULATE: {expr}")
return state
# 2️⃣ Attachment (Excel file)
if "attached" in question.lower() and "excel" in question.lower():
try:
task_id = state.get("task_id")
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
xls_bytes = requests.get(file_url, timeout=10).content
df = pd.read_excel(BytesIO(xls_bytes))
total = df["sales"].sum()
state["answer"] = f"{total:.2f}"
state["tools_used"].append("excel_sum")
state["reasoning_steps"].append("xlsx")
return state
except Exception as e:
state["reasoning_steps"].append(f"xlsx_error:{e}")
# 3️⃣ YouTube search path
youtube_url = re.search(r"https?://www\.youtube\.com/\S+", question)
if youtube_url:
transcript = youtube_transcript.invoke({"url": youtube_url.group(0)})
state["context"] = transcript
state["tools_used"].append("youtube_transcript")
state["reasoning_steps"].append("YouTube")
return state
# 4️⃣ Web search path
query = _extract_search_terms(question)
results_json = web_multi_search.invoke({"query": query})
state["search_results"] = results_json
state["tools_used"].append("web_multi_search")
state["reasoning_steps"].append(f"SEARCH: {query}")
state["answer"] = ""
return state
def _process_info(self, state: AgentState) -> AgentState:
if state["context"]:
# ✅ If context already populated (e.g. YouTube transcript), keep it.
state["reasoning_steps"].append("PROCESS(skip)")
return state
if state["answer"]:
# If calc already produced an answer, just pass through
state["context"] = ""
return state
# Summarize search results for the LLM
summary = _summarize_results(state["search_results"])
if not summary:
summary = state["search_results"][:4000] # cap to 4k chars
state["context"] = summary
state["reasoning_steps"].append("PROCESS")
return state
def _generate_answer(self, state: AgentState) -> AgentState:
if state["answer"]:
# calculator already filled it
print("\nCalculator is used ==> No LLM is invoked.\n")
return state
prompt = [
SystemMessage(content=self.SYSTEM_PROMPT),
HumanMessage(
content=(
f"Question: {state['question']}\n\n"
f"Context:\n{state['context']}\n\n"
f"Answer:"
)
),
]
response = self.llm.invoke(prompt)
print(f">>> Raw response from LLM:\n{response}\n")
state["answer"] = response.content.strip()
state["reasoning_steps"].append("GENERATE ANSWER (LLM)")
return state
def _normalize_answer(self, state: AgentState) -> AgentState:
raw = state["answer"].strip()
# 1️⃣ If there’s a pure number anywhere, keep only that number
num = re.search(r"\b\d[\d,\.]*\b", raw)
if num and len(raw) > len(num.group(0)):
raw = num.group(0)
# 2️⃣ Normalize Yes / No
# if raw.lower().strip(".") in {"yes", "no"}:
# raw = raw.capitalize()
# 3️⃣ Remove leading 'User:', 'Answer:', etc.
raw = re.sub(r"^(User|Answer|Context):\s*", "", raw, flags=re.I)
# 4️⃣ Strip trailing punctuation and double-spaces
raw = raw.rstrip(".").strip()
if not raw:
raw = "No answer found"
state["answer"] = raw
state["reasoning_steps"].append("NORMALIZED ANSWER")
return state
def __call__(self, question: str, task_id: str = "") -> str:
"""Main agent call method."""
print(100 * "-")
print(f"GAIA Agent processing question: '{question}'")
try:
initial_state: AgentState = {
"task_id": task_id,
"question": question,
"answer": "",
"search_results": "",
"context": "",
"reasoning_steps": [],
"tools_used": [],
}
# Run the graph
final_state = self.graph.invoke(initial_state)
answer = final_state["answer"]
print(f"Agent reasoning: {' ==> '.join(final_state['reasoning_steps'])}")
print(f"Agent's context {final_state['context']}")
print(f"Tools used: {final_state['tools_used']}")
print(f"Final answer: {answer}")
return answer
except Exception as e:
print(f"Error in agent processing: {e}")
return f"Error processing question: {str(e)}"
def run_and_submit_all(
profile: gr.OAuthProfile | None,
) -> tuple[str, pd.DataFrame | None]:
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = GAIAAgent()
print("GAIA Agent initialized successfully")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question=question_text, task_id=task_id)
answers_payload.append(
{"task_id": task_id, "submitted_answer": submitted_answer}
)
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
}
)
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}",
}
)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result", lines=5, interactive=False
)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
)
else:
print(
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
)
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)