edodso2's picture
first commit
a81b6c4
raw
history blame contribute delete
866 Bytes
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
def create_conversation_chain(MODEL, vectorstore):
# create a new Chat with OpenAI
llm = ChatOpenAI(temperature=0.7, model_name=MODEL)
# set up the conversation memory for the chat
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# the retriever is an abstraction over the VectorStore that will be used during RAG.
# we may need to increse the k value (number of chunks to send) as knowledge base grows
retriever = vectorstore.as_retriever(search_kwargs={"k": 12})
# set up the conversation chain with the LLM, vector store and memory
return ConversationalRetrievalChain.from_llm(
llm=llm, retriever=retriever, memory=memory
)