File size: 6,699 Bytes
1b3c845
0e3780a
1b3c845
0e3780a
1b3c845
0e3780a
 
 
 
 
 
 
 
 
 
 
1b3c845
0e3780a
 
 
 
1b3c845
 
0e3780a
1b3c845
0e3780a
1b3c845
0e3780a
1b3c845
0e3780a
 
 
1b3c845
0e3780a
 
1b3c845
0e3780a
 
 
 
 
1b3c845
 
 
0e3780a
 
 
1b3c845
0e3780a
 
1b3c845
0e3780a
 
 
 
 
1b3c845
 
0e3780a
 
 
1b3c845
0e3780a
 
 
 
 
1b3c845
0e3780a
 
 
 
 
 
 
 
 
 
 
 
1b3c845
 
0e3780a
1b3c845
0e3780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3c845
0e3780a
 
1b3c845
0e3780a
 
1b3c845
0e3780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b3c845
0e3780a
1b3c845
0e3780a
 
 
 
 
 
1b3c845
 
0e3780a
1b3c845
0e3780a
 
 
 
 
 
 
 
 
 
1b3c845
 
0e3780a
 
1b3c845
0e3780a
 
1b3c845
0e3780a
 
 
 
1b3c845
0e3780a
1b3c845
0e3780a
1b3c845
 
0e3780a
 
 
 
 
 
 
1b3c845
0e3780a
1b3c845
0e3780a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os

import streamlit as st
from dotenv import load_dotenv
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint

# --- ์ƒ์ˆ˜ ์ •์˜ ---
# ์‚ฌ์šฉํ•  Hugging Face ๋ชจ๋ธ ID
MODEL_ID = "google/gemma-3n-e4b"
# ํ”„๋กฌํ”„ํŠธ ํ…œํ”Œ๋ฆฟ
PROMPT_TEMPLATE = """
[INST] {system_message}
ํ˜„์žฌ ๋Œ€ํ™”:
{chat_history}

์‚ฌ์šฉ์ž: {user_text}
[/INST]
AI:
"""


# --- LLM ๋ฐ ์ฒด์ธ ์„ค์ • ํ•จ์ˆ˜ ---

def get_llm(max_new_tokens=128, temperature=0.1):
    """
    Hugging Face ์ถ”๋ก ์„ ์œ„ํ•œ ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ์ƒ์„ฑํ•˜๊ณ  ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.

    Args:
        max_new_tokens (int): ์ƒ์„ฑํ•  ์ตœ๋Œ€ ํ† ํฐ ์ˆ˜์ž…๋‹ˆ๋‹ค.
        temperature (float): ์ƒ˜ํ”Œ๋ง ์˜จ๋„๋กœ, ๋‚ฎ์„์ˆ˜๋ก ๊ฒฐ์ •์ ์ธ ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

    Returns:
        HuggingFaceEndpoint: ์„ค์ •๋œ ์–ธ์–ด ๋ชจ๋ธ ๊ฐ์ฒด์ž…๋‹ˆ๋‹ค.
    """
    return HuggingFaceEndpoint(
        repo_id=MODEL_ID,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=os.getenv("HF_TOKEN"),
    )


def get_chain(llm):
    """
    ์ฃผ์–ด์ง„ ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ์‚ฌ์šฉํ•˜์—ฌ ๋Œ€ํ™” ์ฒด์ธ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

    Args:
        llm (HuggingFaceEndpoint): ์‚ฌ์šฉํ•  ์–ธ์–ด ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.

    Returns:
        RunnableSequence: LangChain ํ‘œํ˜„ ์–ธ์–ด(LCEL)๋กœ ๊ตฌ์„ฑ๋œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•œ ์ฒด์ธ์ž…๋‹ˆ๋‹ค.
    """
    prompt = PromptTemplate.from_template(PROMPT_TEMPLATE)
    return prompt | llm | StrOutputParser()


def generate_response(chain, system_message, chat_history, user_text):
    """
    LLM ์ฒด์ธ์„ ํ˜ธ์ถœํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ์ž…๋ ฅ์— ๋Œ€ํ•œ ์‘๋‹ต์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

    Args:
        chain (RunnableSequence): ์‘๋‹ต ์ƒ์„ฑ์„ ์œ„ํ•œ LLM ์ฒด์ธ์ž…๋‹ˆ๋‹ค.
        system_message (str): AI์˜ ์—ญํ• ์„ ์ •์˜ํ•˜๋Š” ์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€์ž…๋‹ˆ๋‹ค.
        chat_history (list[dict]): ์ด์ „ ๋Œ€ํ™” ๊ธฐ๋ก์ž…๋‹ˆ๋‹ค.
        user_text (str): ์‚ฌ์šฉ์ž์˜ ํ˜„์žฌ ์ž…๋ ฅ ๋ฉ”์‹œ์ง€์ž…๋‹ˆ๋‹ค.

    Returns:
        str: ์ƒ์„ฑ๋œ AI์˜ ์‘๋‹ต ๋ฉ”์‹œ์ง€์ž…๋‹ˆ๋‹ค.
    """
    history_str = "\n".join(
        [f"{msg['role']}: {msg['content']}" for msg in chat_history]
    )
    response = chain.invoke({
        "system_message": system_message,
        "chat_history": history_str,
        "user_text": user_text,
    })
    return response.split("AI:")[-1].strip()


# --- UI ๋ Œ๋”๋ง ํ•จ์ˆ˜ ---

def initialize_session_state():
    """
    Streamlit ์„ธ์…˜ ์ƒํƒœ๋ฅผ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค.
    ์„ธ์…˜์ด ์ฒ˜์Œ ์‹œ์ž‘๋  ๋•Œ ๊ธฐ๋ณธ๊ฐ’์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
    """
    defaults = {
        "avatars": {"user": "๐Ÿ‘ค", "assistant": "๐Ÿค—"},
        "chat_history": [],
        "max_response_length": 256,
        "system_message": "๋‹น์‹ ์€ ์ธ๊ฐ„ ์‚ฌ์šฉ์ž์™€ ๋Œ€ํ™”ํ•˜๋Š” ์นœ์ ˆํ•œ AI์ž…๋‹ˆ๋‹ค.",
        "starter_message": "์•ˆ๋…•ํ•˜์„ธ์š”! ์˜ค๋Š˜ ๋ฌด์—‡์„ ๋„์™€๋“œ๋ฆด๊นŒ์š”?",
    }
    for key, value in defaults.items():
        if key not in st.session_state:
            st.session_state[key] = value

    if not st.session_state.chat_history:
        st.session_state.chat_history = [
            {"role": "assistant", "content": st.session_state.starter_message}
        ]


def setup_sidebar():
    """
    ์‚ฌ์ด๋“œ๋ฐ” UI ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ์„ค์ •ํ•˜๊ณ  ๋ Œ๋”๋งํ•ฉ๋‹ˆ๋‹ค.
    ์‚ฌ์šฉ์ž๋Š” ์ด ์‚ฌ์ด๋“œ๋ฐ”์—์„œ ์‹œ์Šคํ…œ ์„ค์ •, AI ๋ฉ”์‹œ์ง€, ๋ชจ๋ธ ์‘๋‹ต ๊ธธ์ด ๋“ฑ์„ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
    """
    with st.sidebar:
        st.header("์‹œ์Šคํ…œ ์„ค์ •")

        st.session_state.system_message = st.text_area(
            "์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€", value=st.session_state.system_message
        )
        st.session_state.starter_message = st.text_area(
            "์ฒซ ๋ฒˆ์งธ AI ๋ฉ”์‹œ์ง€", value=st.session_state.starter_message
        )
        st.session_state.max_response_length = st.number_input(
            "์ตœ๋Œ€ ์‘๋‹ต ๊ธธ์ด", value=st.session_state.max_response_length
        )

        st.markdown("*์•„๋ฐ”ํƒ€ ์„ ํƒ:*")
        col1, col2 = st.columns(2)
        with col1:
            st.session_state.avatars["assistant"] = st.selectbox(
                "AI ์•„๋ฐ”ํƒ€", options=["๐Ÿค—", "๐Ÿ’ฌ", "๐Ÿค–"], index=0
            )
        with col2:
            st.session_state.avatars["user"] = st.selectbox(
                "์‚ฌ์šฉ์ž ์•„๋ฐ”ํƒ€", options=["๐Ÿ‘ค", "๐Ÿ‘ฑโ€โ™‚๏ธ", "๐Ÿ‘จ๐Ÿพ", "๐Ÿ‘ฉ", "๐Ÿ‘ง๐Ÿพ"], index=0
            )

        if st.button("์ฑ„ํŒ… ๊ธฐ๋ก ์ดˆ๊ธฐํ™”"):
            st.session_state.chat_history = [
                {"role": "assistant", "content": st.session_state.starter_message}
            ]
            st.rerun()


def display_chat_history():
    """
    ์„ธ์…˜์— ์ €์žฅ๋œ ์ฑ„ํŒ… ๊ธฐ๋ก์„ ์ˆœํšŒํ•˜๋ฉฐ ํ™”๋ฉด์— ๋ฉ”์‹œ์ง€๋ฅผ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค.
    """
    for message in st.session_state.chat_history:
        if message["role"] == "system":
            continue
        avatar = st.session_state.avatars.get(message["role"])
        with st.chat_message(message["role"], avatar=avatar):
            st.markdown(message["content"])


# --- ๋ฉ”์ธ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์‹คํ–‰ ---

def main():
    """
    ๋ฉ”์ธ Streamlit ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค.
    """
    load_dotenv()

    st.set_page_config(page_title="HuggingFace ChatBot", page_icon="๐Ÿค—")
    st.title("๊ฐœ์ธ HuggingFace ์ฑ—๋ด‡")
    st.markdown(
        f"*์ด๊ฒƒ์€ HuggingFace transformers ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ…์ŠคํŠธ ์ž…๋ ฅ์— ๋Œ€ํ•œ ์‘๋‹ต์„ ์ƒ์„ฑํ•˜๋Š” ๊ฐ„๋‹จํ•œ ์ฑ—๋ด‡์ž…๋‹ˆ๋‹ค. {MODEL_ID} ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.*"
    )

    initialize_session_state()
    setup_sidebar()

    # ์ฑ„ํŒ… ๊ธฐ๋ก ํ‘œ์‹œ
    display_chat_history()

    # ์‚ฌ์šฉ์ž ์ž…๋ ฅ ์ฒ˜๋ฆฌ
    if user_input := st.chat_input("์—ฌ๊ธฐ์— ํ…์ŠคํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”."):
        # ์‚ฌ์šฉ์ž ๋ฉ”์‹œ์ง€๋ฅผ ๊ธฐ๋ก์— ์ถ”๊ฐ€ํ•˜๊ณ  ํ™”๋ฉด์— ํ‘œ์‹œ
        st.session_state.chat_history.append({"role": "user", "content": user_input})
        with st.chat_message("user", avatar=st.session_state.avatars["user"]):
            st.markdown(user_input)

        # AI ์‘๋‹ต ์ƒ์„ฑ ๋ฐ ํ‘œ์‹œ
        with st.chat_message("assistant", avatar=st.session_state.avatars["assistant"]):
            with st.spinner("์ƒ๊ฐ ์ค‘..."):
                llm = get_llm(max_new_tokens=st.session_state.max_response_length)
                chain = get_chain(llm)
                response = generate_response(
                    chain,
                    st.session_state.system_message,
                    st.session_state.chat_history,
                    user_input,
                )
                st.session_state.chat_history.append({"role": "assistant", "content": response})
                st.markdown(response)


if __name__ == "__main__":
    main()