File size: 6,659 Bytes
c05fcc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
Encoders for MandelMem system.
Converts content to vectors and complex coordinates.
"""

import torch
import torch.nn as nn
import numpy as np
from typing import Union, Dict, Any, Tuple
from dataclasses import dataclass


@dataclass
class EncodingResult:
    """Result of encoding operation."""
    vector: torch.Tensor
    complex_coord: complex
    metadata: Dict[str, Any]


class ContentEncoder(nn.Module):
    """Encodes text/image/event content to vector representation."""
    
    def __init__(self, embedding_dim: int = 768, vocab_size: int = 50000):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.vocab_size = vocab_size
        
        # Simple text encoder (can be replaced with transformer)
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.position_encoding = nn.Parameter(torch.randn(512, embedding_dim))
        self.transformer = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(
                d_model=embedding_dim,
                nhead=8,
                dim_feedforward=2048,
                dropout=0.1,
                batch_first=True
            ),
            num_layers=6
        )
        self.pooler = nn.Linear(embedding_dim, embedding_dim)
        
    def tokenize(self, text: str) -> torch.Tensor:
        """Simple tokenization (replace with proper tokenizer)."""
        # Convert to character-level tokens for simplicity
        tokens = [ord(c) % self.vocab_size for c in text[:512]]
        tokens = tokens + [0] * (512 - len(tokens))  # Pad
        return torch.tensor(tokens, dtype=torch.long)
    
    def forward(self, content: Union[str, torch.Tensor]) -> torch.Tensor:
        """Encode content to vector."""
        if isinstance(content, str):
            tokens = self.tokenize(content).unsqueeze(0)
        else:
            tokens = content
            
        # Add position encoding
        seq_len = tokens.size(1)
        pos_enc = self.position_encoding[:seq_len].unsqueeze(0)
        
        # Embed and encode
        embedded = self.embedding(tokens) + pos_enc
        encoded = self.transformer(embedded)
        
        # Pool to single vector
        pooled = torch.mean(encoded, dim=1)
        return torch.tanh(self.pooler(pooled))


class AddressEncoder(nn.Module):
    """Encodes content/metadata to complex coordinate address."""
    
    def __init__(self, input_dim: int = 768, hidden_dim: int = 256, meta_dim: int = 6):
        super().__init__()
        self.input_dim = input_dim
        self.meta_dim = meta_dim
        
        # Two-head MLP for real and imaginary parts
        # Input can be just vector or vector + metadata
        self.shared = nn.Sequential(
            nn.Linear(input_dim + meta_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU()
        )
        
        self.real_head = nn.Linear(hidden_dim, 1)
        self.imag_head = nn.Linear(hidden_dim, 1)
        
    def forward(self, vector: torch.Tensor, meta: Dict[str, Any] = None) -> complex:
        """Convert vector to complex coordinate."""
        # Always add metadata features (use defaults if none provided)
        meta_features = self._encode_metadata(meta or {})
        
        # Concatenate vector and metadata
        combined_input = torch.cat([vector, meta_features], dim=-1)
                
        shared_repr = self.shared(combined_input)
        real_part = torch.tanh(self.real_head(shared_repr)) * 2.0  # Scale to [-2, 2]
        imag_part = torch.tanh(self.imag_head(shared_repr)) * 2.0
        
        return complex(real_part.item(), imag_part.item())
    
    def _encode_metadata(self, meta: Dict[str, Any]) -> torch.Tensor:
        """Encode metadata to features."""
        features = []
        
        # Importance score
        features.append(float(meta.get('importance', 0.5)))
            
        # Source type (one-hot)
        source_types = ['user', 'system', 'external', 'generated']
        source = meta.get('source', 'user')
        source_vec = [1.0 if s == source else 0.0 for s in source_types]
        features.extend(source_vec)
        
        # PII flag
        features.append(1.0 if meta.get('pii', False) else 0.0)
        
        # Ensure we have exactly meta_dim features
        while len(features) < self.meta_dim:
            features.append(0.0)
        features = features[:self.meta_dim]
        
        return torch.tensor(features, dtype=torch.float32).unsqueeze(0)


class TimeEncoder(nn.Module):
    """Encodes temporal features for time-aware memory."""
    
    def __init__(self, time_dim: int = 64):
        super().__init__()
        self.time_dim = time_dim
        
        # Sinusoidal position encoding for time
        self.time_encoder = nn.Sequential(
            nn.Linear(1, time_dim),
            nn.ReLU(),
            nn.Linear(time_dim, time_dim)
        )
        
    def forward(self, timestamp: float) -> torch.Tensor:
        """Encode timestamp to temporal features."""
        # Normalize timestamp (assuming Unix timestamp)
        normalized_time = torch.tensor([timestamp / 1e9], dtype=torch.float32)
        return self.time_encoder(normalized_time)
    
    def get_recency_weight(self, timestamp: float, current_time: float, 
                          half_life: float = 86400.0) -> float:
        """Calculate recency weight with exponential decay."""
        age = current_time - timestamp
        return np.exp(-age / half_life)


class MultiModalEncoder(nn.Module):
    """Combined encoder for content, address, and time."""
    
    def __init__(self, embedding_dim: int = 768):
        super().__init__()
        self.content_encoder = ContentEncoder(embedding_dim)
        self.address_encoder = AddressEncoder(embedding_dim)
        self.time_encoder = TimeEncoder()
        
    def encode(self, content: str, meta: Dict[str, Any] = None, 
               timestamp: float = None) -> EncodingResult:
        """Full encoding pipeline."""
        # Encode content
        vector = self.content_encoder(content)
        
        # Add temporal features if timestamp provided
        if timestamp is not None:
            time_features = self.time_encoder(timestamp)
            # Concatenate or add time features (simplified)
            vector = vector + torch.mean(time_features).item()
            
        # Generate complex address
        complex_coord = self.address_encoder(vector, meta)
        
        return EncodingResult(
            vector=vector.squeeze(0),
            complex_coord=complex_coord,
            metadata=meta or {}
        )