File size: 17,153 Bytes
c05fcc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
"""
Renormalization and compression system for MandelMem.
Handles periodic compression, merging, and summarization of memories.
"""

import torch
import torch.nn as nn
import numpy as np
from typing import List, Dict, Any, Tuple, Optional
from dataclasses import dataclass
import time
from collections import defaultdict

from .quadtree import QuadTree, Tile, MemoryItem


@dataclass
class CompressionResult:
    """Result of compression operation."""
    items_merged: int
    items_summarized: int
    items_promoted: int
    items_pruned: int
    compression_ratio: float
    quality_preserved: float


class MemorySummarizer(nn.Module):
    """Neural network for creating compact memory sketches."""
    
    def __init__(self, embedding_dim: int = 768, sketch_dim: int = 256):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.sketch_dim = sketch_dim
        
        # Encoder for creating sketches
        self.sketch_encoder = nn.Sequential(
            nn.Linear(embedding_dim, embedding_dim // 2),
            nn.ReLU(),
            nn.Linear(embedding_dim // 2, sketch_dim),
            nn.Tanh()
        )
        
        # Decoder for reconstructing from sketches
        self.sketch_decoder = nn.Sequential(
            nn.Linear(sketch_dim, embedding_dim // 2),
            nn.ReLU(),
            nn.Linear(embedding_dim // 2, embedding_dim),
            nn.Tanh()
        )
        
    def create_sketch(self, vectors: torch.Tensor) -> torch.Tensor:
        """Create compact sketch from multiple vectors."""
        if vectors.dim() == 1:
            vectors = vectors.unsqueeze(0)
        
        # Average pooling followed by compression
        pooled = torch.mean(vectors, dim=0, keepdim=True)
        sketch = self.sketch_encoder(pooled)
        return sketch.squeeze(0)
    
    def reconstruct_from_sketch(self, sketch: torch.Tensor) -> torch.Tensor:
        """Reconstruct vector from sketch."""
        if sketch.dim() == 1:
            sketch = sketch.unsqueeze(0)
        
        reconstructed = self.sketch_decoder(sketch)
        return reconstructed.squeeze(0)
    
    def compute_reconstruction_loss(self, original: torch.Tensor, 
                                  reconstructed: torch.Tensor) -> float:
        """Compute reconstruction quality."""
        mse_loss = torch.nn.functional.mse_loss(original, reconstructed)
        cosine_sim = torch.nn.functional.cosine_similarity(
            original.unsqueeze(0), reconstructed.unsqueeze(0)
        ).item()
        
        return mse_loss.item(), cosine_sim


class RenormalizationEngine:
    """Main engine for memory compression and renormalization."""
    
    def __init__(self, quadtree: QuadTree, summarizer: MemorySummarizer,
                 merge_threshold: float = 0.9, sketch_threshold: int = 100):
        self.quadtree = quadtree
        self.summarizer = summarizer
        self.merge_threshold = merge_threshold
        self.sketch_threshold = sketch_threshold
        
        # Track renormalization history
        self.renorm_history: Dict[str, List[Dict[str, Any]]] = defaultdict(list)
        
    def renormalize_tile(self, tile: Tile, preserve_quality: bool = True) -> CompressionResult:
        """Perform full renormalization on a single tile."""
        start_time = time.time()
        initial_count = len(tile.get_all_items())
        
        # Step 1: Merge near-duplicate slots
        merged_count = self._merge_duplicates(tile)
        
        # Step 2: Summarize long tail into sketches
        summarized_count = self._create_sketches(tile)
        
        # Step 3: Promote stable short-term items
        promoted_count = self._promote_stable_items(tile)
        
        # Step 4: Prune consistently unstable entries
        pruned_count = self._prune_unstable_items(tile)
        
        # Step 5: Update attractor
        self._update_attractor_post_renorm(tile)
        
        final_count = len(tile.get_all_items())
        compression_ratio = final_count / initial_count if initial_count > 0 else 1.0
        
        # Measure quality preservation if requested
        quality_preserved = 1.0
        if preserve_quality:
            quality_preserved = self._measure_quality_preservation(tile)
        
        result = CompressionResult(
            items_merged=merged_count,
            items_summarized=summarized_count,
            items_promoted=promoted_count,
            items_pruned=pruned_count,
            compression_ratio=compression_ratio,
            quality_preserved=quality_preserved
        )
        
        # Record renormalization
        self._record_renormalization(tile, result, time.time() - start_time)
        
        return result
    
    def _merge_duplicates(self, tile: Tile) -> int:
        """Merge near-duplicate items in slots."""
        if len(tile.slots) < 2:
            return 0
        
        merged_count = 0
        items_to_remove = set()
        
        # Compare all pairs of items
        for i, item1 in enumerate(tile.slots):
            if i in items_to_remove:
                continue
                
            for j, item2 in enumerate(tile.slots[i+1:], i+1):
                if j in items_to_remove:
                    continue
                
                # Calculate similarity
                similarity = torch.cosine_similarity(
                    item1.vector.unsqueeze(0),
                    item2.vector.unsqueeze(0)
                ).item()
                
                if similarity > self.merge_threshold:
                    # Merge items
                    merged_item = self._merge_items(item1, item2)
                    tile.slots[i] = merged_item
                    items_to_remove.add(j)
                    merged_count += 1
        
        # Remove merged items
        tile.slots = [item for i, item in enumerate(tile.slots) 
                     if i not in items_to_remove]
        
        return merged_count
    
    def _merge_items(self, item1: MemoryItem, item2: MemoryItem) -> MemoryItem:
        """Merge two similar memory items."""
        # Weighted average of vectors based on stability
        w1 = item1.stability_score
        w2 = item2.stability_score
        total_weight = w1 + w2
        
        if total_weight > 0:
            merged_vector = (w1 * item1.vector + w2 * item2.vector) / total_weight
        else:
            merged_vector = (item1.vector + item2.vector) / 2
        
        # Combine content (keep more important one)
        if item1.metadata.get('importance', 0.5) >= item2.metadata.get('importance', 0.5):
            primary_content = item1.content
            primary_meta = item1.metadata.copy()
        else:
            primary_content = item2.content
            primary_meta = item2.metadata.copy()
        
        # Update metadata
        primary_meta['merged_from'] = [item1.content[:50], item2.content[:50]]
        primary_meta['merge_timestamp'] = time.time()
        
        return MemoryItem(
            vector=merged_vector,
            content=primary_content,
            metadata=primary_meta,
            timestamp=max(item1.timestamp, item2.timestamp),
            stability_score=max(item1.stability_score, item2.stability_score),
            access_count=item1.access_count + item2.access_count
        )
    
    def _create_sketches(self, tile: Tile) -> int:
        """Create sketches for long-tail items."""
        if len(tile.slots) < self.sketch_threshold:
            return 0
        
        # Sort by access frequency and stability
        sorted_items = sorted(tile.slots, 
                            key=lambda x: (x.access_count, x.stability_score),
                            reverse=True)
        
        # Keep top items, sketch the rest
        keep_count = self.sketch_threshold // 2
        to_keep = sorted_items[:keep_count]
        to_sketch = sorted_items[keep_count:]
        
        if not to_sketch:
            return 0
        
        # Create sketches for groups of similar items
        sketch_groups = self._group_for_sketching(to_sketch)
        sketched_count = 0
        
        for group in sketch_groups:
            if len(group) > 1:
                # Create sketch
                vectors = torch.stack([item.vector for item in group])
                sketch = self.summarizer.create_sketch(vectors)
                
                # Create sketch item
                sketch_content = f"[SKETCH of {len(group)} items: " + \
                               ", ".join([item.content[:20] for item in group[:3]]) + \
                               ("..." if len(group) > 3 else "") + "]"
                
                sketch_meta = {
                    'type': 'sketch',
                    'original_count': len(group),
                    'sketch_timestamp': time.time(),
                    'original_items': [item.content[:50] for item in group]
                }
                
                sketch_item = MemoryItem(
                    vector=sketch,
                    content=sketch_content,
                    metadata=sketch_meta,
                    timestamp=max(item.timestamp for item in group),
                    stability_score=np.mean([item.stability_score for item in group])
                )
                
                to_keep.append(sketch_item)
                sketched_count += len(group)
        
        tile.slots = to_keep
        return sketched_count
    
    def _group_for_sketching(self, items: List[MemoryItem], 
                           similarity_threshold: float = 0.7) -> List[List[MemoryItem]]:
        """Group similar items for sketching."""
        groups = []
        ungrouped = items.copy()
        
        while ungrouped:
            # Start new group with first ungrouped item
            current_group = [ungrouped.pop(0)]
            
            # Find similar items to add to group
            i = 0
            while i < len(ungrouped):
                item = ungrouped[i]
                
                # Check similarity with group centroid
                group_vectors = torch.stack([g_item.vector for g_item in current_group])
                group_centroid = torch.mean(group_vectors, dim=0)
                
                similarity = torch.cosine_similarity(
                    item.vector.unsqueeze(0),
                    group_centroid.unsqueeze(0)
                ).item()
                
                if similarity > similarity_threshold:
                    current_group.append(ungrouped.pop(i))
                else:
                    i += 1
            
            groups.append(current_group)
        
        return groups
    
    def _promote_stable_items(self, tile: Tile) -> int:
        """Promote stable items from buffer to slots."""
        promoted_count = 0
        items_to_promote = []
        
        for item in tile.buffer:
            # Check if item has become stable through repetition
            if (item.access_count >= 3 and 
                item.stability_score > 0.6 and
                len(tile.slots) < tile.max_slots):
                items_to_promote.append(item)
        
        # Promote items
        for item in items_to_promote:
            tile.buffer.remove(item)
            tile.slots.append(item)
            promoted_count += 1
        
        return promoted_count
    
    def _prune_unstable_items(self, tile: Tile) -> int:
        """Remove consistently unstable items."""
        pruned_count = 0
        current_time = time.time()
        
        # Prune from buffer
        stable_buffer = []
        for item in tile.buffer:
            age = current_time - item.timestamp
            if (item.stability_score < 0.2 and 
                age > tile.half_life and 
                item.access_count < 2):
                pruned_count += 1
            else:
                stable_buffer.append(item)
        
        tile.buffer = stable_buffer
        
        # Prune from plastic band
        stable_plastic = []
        for item in tile.plastic:
            if item.stability_score > 0.3 or item.access_count >= 2:
                stable_plastic.append(item)
            else:
                pruned_count += 1
        
        tile.plastic = stable_plastic
        
        return pruned_count
    
    def _update_attractor_post_renorm(self, tile: Tile):
        """Update tile attractor after renormalization."""
        all_items = tile.get_all_items()
        if not all_items:
            return
        
        # Weighted average based on stability and access
        total_weight = 0
        weighted_sum = torch.zeros_like(tile.attractor)
        
        for item in all_items:
            weight = item.stability_score * (1 + np.log(1 + item.access_count))
            weighted_sum += weight * item.vector
            total_weight += weight
        
        if total_weight > 0:
            tile.attractor = weighted_sum / total_weight
    
    def _measure_quality_preservation(self, tile: Tile) -> float:
        """Measure how well renormalization preserved retrieval quality."""
        # This is a simplified quality measure
        # In practice, you'd want to test retrieval performance before/after
        
        all_items = tile.get_all_items()
        if not all_items:
            return 1.0
        
        # Check diversity of remaining items
        if len(all_items) < 2:
            return 0.5
        
        similarities = []
        for i, item1 in enumerate(all_items):
            for item2 in all_items[i+1:]:
                sim = torch.cosine_similarity(
                    item1.vector.unsqueeze(0),
                    item2.vector.unsqueeze(0)
                ).item()
                similarities.append(sim)
        
        # Good quality = diverse items (low average similarity)
        avg_similarity = np.mean(similarities)
        diversity_score = 1.0 - avg_similarity
        
        return max(0.0, min(1.0, diversity_score))
    
    def _record_renormalization(self, tile: Tile, result: CompressionResult, duration: float):
        """Record renormalization event for tracking."""
        record = {
            'timestamp': time.time(),
            'duration': duration,
            'result': result,
            'tile_stats': {
                'total_items': len(tile.get_all_items()),
                'slots': len(tile.slots),
                'buffer': len(tile.buffer),
                'plastic': len(tile.plastic)
            }
        }
        
        self.renorm_history[tile.tile_id].append(record)
        tile.stats.last_renorm = record['timestamp']
    
    def schedule_renormalization(self, cadence_hours: int = 24, 
                               write_threshold: int = 10000) -> List[str]:
        """Schedule tiles for renormalization based on criteria."""
        current_time = time.time()
        tiles_to_renorm = []
        
        for tile_id, tile in self.quadtree.tiles.items():
            # Check time-based criterion
            time_since_renorm = current_time - tile.stats.last_renorm
            time_criterion = time_since_renorm > (cadence_hours * 3600)
            
            # Check write-based criterion
            write_criterion = tile.stats.write_count > write_threshold
            
            # Check capacity criterion
            capacity_criterion = (len(tile.slots) >= tile.max_slots * 0.9 or
                                len(tile.buffer) >= tile.max_buffer * 0.9)
            
            if time_criterion or write_criterion or capacity_criterion:
                tiles_to_renorm.append(tile_id)
        
        return tiles_to_renorm
    
    def get_compression_stats(self) -> Dict[str, Any]:
        """Get overall compression statistics."""
        total_renorms = sum(len(history) for history in self.renorm_history.values())
        
        if total_renorms == 0:
            return {'message': 'No renormalizations performed yet'}
        
        # Aggregate statistics
        total_merged = sum(
            record['result'].items_merged 
            for history in self.renorm_history.values()
            for record in history
        )
        
        total_sketched = sum(
            record['result'].items_summarized
            for history in self.renorm_history.values()
            for record in history
        )
        
        avg_compression_ratio = np.mean([
            record['result'].compression_ratio
            for history in self.renorm_history.values()
            for record in history
        ])
        
        avg_quality = np.mean([
            record['result'].quality_preserved
            for history in self.renorm_history.values()
            for record in history
        ])
        
        return {
            'total_renormalizations': total_renorms,
            'total_items_merged': total_merged,
            'total_items_sketched': total_sketched,
            'average_compression_ratio': avg_compression_ratio,
            'average_quality_preserved': avg_quality,
            'tiles_with_history': len(self.renorm_history)
        }