File size: 16,409 Bytes
c05fcc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
"""
Multi-scale retrieval system for MandelMem.
Implements zoom and hop functionality for hierarchical memory access.
"""

import torch
import numpy as np
from typing import List, Dict, Any, Tuple, Optional
from dataclasses import dataclass
import time

from .quadtree import QuadTree, Tile, MemoryItem
from .encoders import MultiModalEncoder


@dataclass
class RetrievalResult:
    """Result of memory retrieval operation."""
    items: List[MemoryItem]
    similarities: List[float]
    trace: List[str]  # Tile path taken
    stability_scores: List[float]
    hops: List[str]  # Julia-neighbor hops
    confidence: float
    total_time: float


@dataclass
class RoutingPotential:
    """Routing potential for tile selection."""
    tile_id: str
    spatial_distance: float
    semantic_similarity: float
    combined_potential: float


class MultiScaleRetriever:
    """Implements multi-scale retrieval with zoom and hop functionality."""
    
    def __init__(self, quadtree: QuadTree, encoder: MultiModalEncoder, 
                 alpha: float = 1.0, beta: float = 1.0):
        self.quadtree = quadtree
        self.encoder = encoder
        self.alpha = alpha  # Spatial weight
        self.beta = beta   # Semantic weight
        
    def retrieve(self, query: str, k: int = 5, with_trace: bool = True,
                confidence_threshold: float = 0.3, max_hops: int = 3) -> RetrievalResult:
        """Main retrieval interface."""
        start_time = time.time()
        
        # Encode query
        encoding = self.encoder.encode(query)
        query_vector = encoding.vector
        query_coord = encoding.complex_coord
        
        # Route to leaf tile
        routing_path = self._route_to_leaf(query_coord, query_vector)
        trace = [step.tile_id for step in routing_path]
        
        # Retrieve from leaf tile
        leaf_tile = self.quadtree.tiles[trace[-1]]
        local_results = leaf_tile.search_local(query_vector, k * 2)
        
        # Calculate confidence
        confidence = self._calculate_confidence(local_results)
        
        # Perform Julia-neighbor hops if confidence is low
        hops = []
        if confidence < confidence_threshold and max_hops > 0:
            hop_results = self._perform_hops(leaf_tile, query_vector, k, max_hops)
            local_results.extend(hop_results)
            hops = [f"hop_{i}" for i in range(len(hop_results))]
        
        # Sort and limit results
        local_results.sort(key=lambda x: x[1], reverse=True)
        final_results = local_results[:k]
        
        # Extract components
        items = [item for item, _ in final_results]
        similarities = [sim for _, sim in final_results]
        stability_scores = [item.stability_score for item in items]
        
        total_time = time.time() - start_time
        
        return RetrievalResult(
            items=items,
            similarities=similarities,
            trace=trace,
            stability_scores=stability_scores,
            hops=hops,
            confidence=confidence,
            total_time=total_time
        )
    
    def _route_to_leaf(self, query_coord: complex, query_vector: torch.Tensor) -> List[RoutingPotential]:
        """Route from root to leaf using routing potential."""
        path = []
        current_tile_id = "root"
        
        while current_tile_id in self.quadtree.tile_hierarchy:
            children = self.quadtree.tile_hierarchy[current_tile_id]
            if not children:
                break
                
            # Calculate routing potential for each child
            potentials = []
            for child_id in children:
                child_tile = self.quadtree.tiles[child_id]
                potential = self._calculate_routing_potential(
                    child_tile, query_coord, query_vector
                )
                potentials.append(potential)
            
            # Select child with minimum potential
            best_potential = min(potentials, key=lambda p: p.combined_potential)
            path.append(best_potential)
            current_tile_id = best_potential.tile_id
            
        return path
    
    def _calculate_routing_potential(self, tile: Tile, query_coord: complex, 
                                   query_vector: torch.Tensor) -> RoutingPotential:
        """Calculate routing potential ρ(t; u_q) = α||u_q - μ_t|| + β attn(v_q, A_t)."""
        # Spatial component
        tile_center = tile.get_center()
        spatial_distance = abs(query_coord - tile_center)
        
        # Semantic component (attention with attractor)
        semantic_similarity = torch.cosine_similarity(
            query_vector.unsqueeze(0), 
            tile.attractor.unsqueeze(0)
        ).item()
        
        # Combined potential (lower is better)
        combined_potential = (self.alpha * spatial_distance + 
                            self.beta * (1.0 - semantic_similarity))
        
        return RoutingPotential(
            tile_id=tile.tile_id,
            spatial_distance=spatial_distance,
            semantic_similarity=semantic_similarity,
            combined_potential=combined_potential
        )
    
    def _calculate_confidence(self, results: List[Tuple[MemoryItem, float]]) -> float:
        """Calculate retrieval confidence based on similarity scores."""
        if not results:
            return 0.0
            
        similarities = [sim for _, sim in results]
        
        # Confidence based on top similarity and score distribution
        max_sim = max(similarities)
        mean_sim = np.mean(similarities)
        std_sim = np.std(similarities) if len(similarities) > 1 else 0.0
        
        # Higher confidence for high max similarity and low variance
        confidence = max_sim * (1.0 - std_sim / (mean_sim + 1e-6))
        return min(1.0, max(0.0, confidence))
    
    def _perform_hops(self, leaf_tile: Tile, query_vector: torch.Tensor, 
                     k: int, max_hops: int) -> List[Tuple[MemoryItem, float]]:
        """Perform Julia-neighbor hops for cross-cluster recall."""
        hop_results = []
        visited_tiles = {leaf_tile.tile_id}
        
        for hop in range(max_hops):
            # Get neighbors of current tiles
            neighbors = []
            for tile_id in visited_tiles:
                tile_neighbors = self.quadtree.get_neighbors(tile_id)
                for neighbor in tile_neighbors:
                    if neighbor.tile_id not in visited_tiles:
                        neighbors.append(neighbor)
            
            if not neighbors:
                break
                
            # Calculate cross-tile affinity and select best neighbors
            neighbor_affinities = []
            for neighbor in neighbors:
                affinity = self._calculate_cross_tile_affinity(
                    leaf_tile, neighbor, query_vector
                )
                neighbor_affinities.append((neighbor, affinity))
            
            # Sort by affinity and take top neighbors
            neighbor_affinities.sort(key=lambda x: x[1], reverse=True)
            top_neighbors = neighbor_affinities[:2]  # Limit hops per iteration
            
            # Search in top neighbors
            for neighbor, affinity in top_neighbors:
                neighbor_results = neighbor.search_local(query_vector, k // 2)
                # Weight results by cross-tile affinity
                weighted_results = [
                    (item, sim * affinity) for item, sim in neighbor_results
                ]
                hop_results.extend(weighted_results)
                visited_tiles.add(neighbor.tile_id)
        
        return hop_results
    
    def _calculate_cross_tile_affinity(self, source_tile: Tile, target_tile: Tile, 
                                     query_vector: torch.Tensor) -> float:
        """Calculate affinity between tiles for hop decisions."""
        # Attractor similarity
        attractor_sim = torch.cosine_similarity(
            source_tile.attractor.unsqueeze(0),
            target_tile.attractor.unsqueeze(0)
        ).item()
        
        # Query relevance to target
        query_relevance = torch.cosine_similarity(
            query_vector.unsqueeze(0),
            target_tile.attractor.unsqueeze(0)
        ).item()
        
        # Spatial proximity
        spatial_distance = abs(source_tile.get_center() - target_tile.get_center())
        spatial_weight = 1.0 / (1.0 + spatial_distance)
        
        # Combined affinity
        affinity = 0.4 * attractor_sim + 0.4 * query_relevance + 0.2 * spatial_weight
        return max(0.0, affinity)


class ContextualRetriever:
    """Enhanced retriever with contextual understanding."""
    
    def __init__(self, base_retriever: MultiScaleRetriever):
        self.base_retriever = base_retriever
        self.context_history: List[str] = []
        self.context_embeddings: List[torch.Tensor] = []
        
    def retrieve_with_context(self, query: str, context: Optional[str] = None,
                            k: int = 5) -> RetrievalResult:
        """Retrieve with contextual awareness."""
        # Update context if provided
        if context:
            self._update_context(context)
        
        # Enhance query with context
        enhanced_query = self._enhance_query_with_context(query)
        
        # Perform base retrieval
        result = self.base_retriever.retrieve(enhanced_query, k)
        
        # Re-rank results based on context
        if self.context_embeddings:
            result = self._rerank_with_context(result)
        
        return result
    
    def _update_context(self, context: str):
        """Update context history."""
        self.context_history.append(context)
        
        # Encode context
        encoding = self.base_retriever.encoder.encode(context)
        self.context_embeddings.append(encoding.vector)
        
        # Limit context window
        max_context = 10
        if len(self.context_history) > max_context:
            self.context_history = self.context_history[-max_context:]
            self.context_embeddings = self.context_embeddings[-max_context:]
    
    def _enhance_query_with_context(self, query: str) -> str:
        """Enhance query with recent context."""
        if not self.context_history:
            return query
            
        # Simple context enhancement (can be made more sophisticated)
        recent_context = " ".join(self.context_history[-3:])
        return f"{query} [Context: {recent_context}]"
    
    def _rerank_with_context(self, result: RetrievalResult) -> RetrievalResult:
        """Re-rank results based on context similarity."""
        if not self.context_embeddings or not result.items:
            return result
        
        # Calculate context similarity for each result
        context_vector = torch.mean(torch.stack(self.context_embeddings), dim=0)
        
        new_similarities = []
        for i, item in enumerate(result.items):
            base_sim = result.similarities[i]
            context_sim = torch.cosine_similarity(
                item.vector.unsqueeze(0),
                context_vector.unsqueeze(0)
            ).item()
            
            # Combine base and context similarity
            enhanced_sim = 0.7 * base_sim + 0.3 * context_sim
            new_similarities.append(enhanced_sim)
        
        # Re-sort by enhanced similarity
        sorted_indices = sorted(range(len(new_similarities)), 
                              key=lambda i: new_similarities[i], reverse=True)
        
        result.items = [result.items[i] for i in sorted_indices]
        result.similarities = [new_similarities[i] for i in sorted_indices]
        result.stability_scores = [result.stability_scores[i] for i in sorted_indices]
        
        return result


class ExplainableRetriever:
    """Retriever with enhanced interpretability features."""
    
    def __init__(self, base_retriever: MultiScaleRetriever):
        self.base_retriever = base_retriever
        
    def retrieve_with_explanation(self, query: str, k: int = 5) -> Dict[str, Any]:
        """Retrieve with detailed explanation of the process."""
        result = self.base_retriever.retrieve(query, k, with_trace=True)
        
        explanation = {
            'query': query,
            'results': result,
            'routing_explanation': self._explain_routing(result.trace),
            'similarity_explanation': self._explain_similarities(result),
            'stability_explanation': self._explain_stability(result),
            'counterfactuals': self._generate_counterfactuals(query, result)
        }
        
        return explanation
    
    def _explain_routing(self, trace: List[str]) -> Dict[str, Any]:
        """Explain the routing path taken."""
        explanation = {
            'path': trace,
            'depth': len(trace) - 1,
            'reasoning': []
        }
        
        for i, tile_id in enumerate(trace):
            if i == 0:
                explanation['reasoning'].append(f"Started at root tile")
            else:
                parent_id = trace[i-1]
                explanation['reasoning'].append(
                    f"Routed from {parent_id} to {tile_id} based on spatial and semantic potential"
                )
        
        return explanation
    
    def _explain_similarities(self, result: RetrievalResult) -> List[Dict[str, Any]]:
        """Explain similarity scores for retrieved items."""
        explanations = []
        
        for i, (item, similarity) in enumerate(zip(result.items, result.similarities)):
            explanation = {
                'rank': i + 1,
                'similarity': similarity,
                'content_preview': item.content[:100] + "..." if len(item.content) > 100 else item.content,
                'factors': {
                    'semantic_match': similarity,
                    'recency': item.metadata.get('recency_weight', 0.5),
                    'importance': item.metadata.get('importance', 0.5),
                    'access_frequency': min(item.access_count / 10.0, 1.0)
                }
            }
            explanations.append(explanation)
        
        return explanations
    
    def _explain_stability(self, result: RetrievalResult) -> Dict[str, Any]:
        """Explain stability scores and persistence."""
        if not result.stability_scores:
            return {'message': 'No stability information available'}
        
        avg_stability = np.mean(result.stability_scores)
        stability_distribution = {
            'high_stability': sum(1 for s in result.stability_scores if s > 0.7),
            'medium_stability': sum(1 for s in result.stability_scores if 0.3 <= s <= 0.7),
            'low_stability': sum(1 for s in result.stability_scores if s < 0.3)
        }
        
        return {
            'average_stability': avg_stability,
            'distribution': stability_distribution,
            'interpretation': self._interpret_stability(avg_stability)
        }
    
    def _interpret_stability(self, avg_stability: float) -> str:
        """Interpret stability score."""
        if avg_stability > 0.8:
            return "Very stable memories - likely to persist long-term"
        elif avg_stability > 0.6:
            return "Moderately stable memories - established but may evolve"
        elif avg_stability > 0.4:
            return "Somewhat unstable memories - in plastic boundary band"
        else:
            return "Low stability memories - may be forgotten soon"
    
    def _generate_counterfactuals(self, query: str, result: RetrievalResult) -> List[str]:
        """Generate counterfactual explanations."""
        counterfactuals = []
        
        if result.confidence < 0.5:
            counterfactuals.append("If the query were more specific, retrieval confidence would be higher")
        
        if len(result.hops) > 0:
            counterfactuals.append(f"Without Julia-neighbor hops, {len(result.hops)} additional results would not have been found")
        
        if result.stability_scores and np.mean(result.stability_scores) < 0.5:
            counterfactuals.append("If persistence thresholds were lower, more stable memories would be available")
        
        return counterfactuals