Spaces:
Sleeping
Sleeping
File size: 16,937 Bytes
c05fcc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
"""
Training objectives and loss functions for MandelMem system.
Implements the multi-objective training described in the blueprint.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from typing import Dict, Any, List, Tuple, Optional
from dataclasses import dataclass
from .quadtree import QuadTree, MemoryItem
from .dynamics import IterativeDynamics
from .retrieval import MultiScaleRetriever
@dataclass
class TrainingBatch:
"""Batch of training data for MandelMem."""
queries: List[str]
targets: List[str]
importance_labels: List[float]
noise_items: List[str]
metadata: List[Dict[str, Any]]
@dataclass
class LossComponents:
"""Individual loss components."""
retrieval_loss: float
stability_loss: float
escape_loss: float
margin_loss: float
renorm_loss: float
total_loss: float
class MandelMemLoss(nn.Module):
"""Multi-objective loss function for MandelMem training."""
def __init__(self, lambda_read: float = 1.0, lambda_stab: float = 0.5,
lambda_esc: float = 0.3, lambda_margin: float = 0.2,
lambda_renorm: float = 0.1):
super().__init__()
self.lambda_read = lambda_read
self.lambda_stab = lambda_stab
self.lambda_esc = lambda_esc
self.lambda_margin = lambda_margin
self.lambda_renorm = lambda_renorm
def forward(self, batch: TrainingBatch, model_outputs: Dict[str, Any]) -> LossComponents:
"""Compute all loss components."""
# L_read: Retrieval loss (CE/contrastive on correct item)
retrieval_loss = self._compute_retrieval_loss(
batch.queries, batch.targets, model_outputs['retrievals']
)
# L_stab: Stability loss for important items
stability_loss = self._compute_stability_loss(
batch.importance_labels, model_outputs['stability_scores']
)
# L_esc: Escape loss for noise items
escape_loss = self._compute_escape_loss(
batch.noise_items, model_outputs['escape_scores']
)
# L_margin: Margin loss between persist vs non-persist
margin_loss = self._compute_margin_loss(
model_outputs['persist_scores'], model_outputs['escape_scores']
)
# L_renorm: Compression loss (preserve retrieval after merges)
renorm_loss = self._compute_renorm_loss(
model_outputs.get('pre_renorm_retrievals'),
model_outputs.get('post_renorm_retrievals')
)
# Total loss
total_loss = (self.lambda_read * retrieval_loss +
self.lambda_stab * stability_loss +
self.lambda_esc * escape_loss +
self.lambda_margin * margin_loss +
self.lambda_renorm * renorm_loss)
return LossComponents(
retrieval_loss=retrieval_loss,
stability_loss=stability_loss,
escape_loss=escape_loss,
margin_loss=margin_loss,
renorm_loss=renorm_loss,
total_loss=total_loss
)
def _compute_retrieval_loss(self, queries: List[str], targets: List[str],
retrievals: List[List[MemoryItem]]) -> float:
"""Compute retrieval accuracy loss."""
total_loss = 0.0
valid_pairs = 0
for query, target, retrieved_items in zip(queries, targets, retrievals):
if not retrieved_items:
continue
# Find target in retrieved items
target_found = False
target_rank = len(retrieved_items)
for i, item in enumerate(retrieved_items):
if target.lower() in item.content.lower():
target_found = True
target_rank = i
break
if target_found:
# Ranking loss - penalize lower ranks
rank_loss = np.log(1 + target_rank)
total_loss += rank_loss
else:
# Target not found - high penalty
total_loss += 10.0
valid_pairs += 1
return total_loss / max(valid_pairs, 1)
def _compute_stability_loss(self, importance_labels: List[float],
stability_scores: List[float]) -> float:
"""Keep important items stable (low potential)."""
if not importance_labels or not stability_scores:
return 0.0
loss = 0.0
for importance, stability in zip(importance_labels, stability_scores):
if importance > 0.7: # Important items
# Want high stability (low escape potential)
target_stability = importance
loss += F.mse_loss(
torch.tensor(stability),
torch.tensor(target_stability)
)
return loss
def _compute_escape_loss(self, noise_items: List[str],
escape_scores: List[float]) -> float:
"""Push noise items to escape (high potential)."""
if not noise_items or not escape_scores:
return 0.0
loss = 0.0
tau = 2.0 # Base threshold
for escape_score in escape_scores:
# Want escape scores above threshold
if escape_score <= tau:
loss += (tau - escape_score) ** 2
return loss / len(escape_scores)
def _compute_margin_loss(self, persist_scores: List[float],
escape_scores: List[float]) -> float:
"""Enlarge gap between persist vs escape near boundaries."""
if not persist_scores or not escape_scores:
return 0.0
margin = 0.5
loss = 0.0
count = 0
for p_score in persist_scores:
for e_score in escape_scores:
# Want persist_score + margin < escape_score
gap = e_score - p_score
if gap < margin:
loss += (margin - gap) ** 2
count += 1
return loss / max(count, 1)
def _compute_renorm_loss(self, pre_renorm: Optional[List[List[MemoryItem]]],
post_renorm: Optional[List[List[MemoryItem]]]) -> float:
"""Preserve retrieval quality after renormalization."""
if not pre_renorm or not post_renorm:
return 0.0
loss = 0.0
valid_comparisons = 0
for pre_items, post_items in zip(pre_renorm, post_renorm):
if not pre_items or not post_items:
continue
# Compare top retrieved items
pre_top = pre_items[0] if pre_items else None
post_top = post_items[0] if post_items else None
if pre_top and post_top:
# Cosine similarity between top results
similarity = F.cosine_similarity(
pre_top.vector.unsqueeze(0),
post_top.vector.unsqueeze(0)
)
loss += 1.0 - similarity.item()
valid_comparisons += 1
return loss / max(valid_comparisons, 1)
class MandelMemTrainer:
"""Training orchestrator for MandelMem system."""
def __init__(self, quadtree: QuadTree, dynamics: IterativeDynamics,
retriever: MultiScaleRetriever, loss_fn: MandelMemLoss):
self.quadtree = quadtree
self.dynamics = dynamics
self.retriever = retriever
self.loss_fn = loss_fn
# Training state
self.training_history: List[Dict[str, Any]] = []
self.current_epoch = 0
def train_epoch(self, train_batches: List[TrainingBatch],
learning_rate: float = 1e-4) -> Dict[str, float]:
"""Train for one epoch."""
# Set up optimizer
all_params = list(self.dynamics.parameters())
if hasattr(self.retriever.encoder, 'parameters'):
all_params.extend(self.retriever.encoder.parameters())
optimizer = torch.optim.Adam(all_params, lr=learning_rate)
epoch_losses = []
for batch in train_batches:
optimizer.zero_grad()
# Forward pass
model_outputs = self._forward_pass(batch)
# Compute losses
losses = self.loss_fn(batch, model_outputs)
# Backward pass
losses.total_loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(all_params, max_norm=1.0)
optimizer.step()
epoch_losses.append({
'total': losses.total_loss.item(),
'retrieval': losses.retrieval_loss,
'stability': losses.stability_loss,
'escape': losses.escape_loss,
'margin': losses.margin_loss,
'renorm': losses.renorm_loss
})
# Aggregate epoch results
epoch_stats = self._aggregate_losses(epoch_losses)
self.training_history.append(epoch_stats)
self.current_epoch += 1
return epoch_stats
def _forward_pass(self, batch: TrainingBatch) -> Dict[str, Any]:
"""Forward pass through the model."""
outputs = {
'retrievals': [],
'stability_scores': [],
'escape_scores': [],
'persist_scores': [],
'pre_renorm_retrievals': None,
'post_renorm_retrievals': None
}
# Process each query
for i, (query, target, importance, meta) in enumerate(
zip(batch.queries, batch.targets, batch.importance_labels, batch.metadata)
):
# Encode and write target to memory
encoding = self.retriever.encoder.encode(target, meta)
# Route to tile and perform iterative write
path = self.quadtree.route_to_leaf(encoding.complex_coord)
leaf_tile = self.quadtree.tiles[path[-1]]
# Get iteration result
iter_result = self.dynamics.iterate_write(
leaf_tile, encoding.vector, encoding.complex_coord, meta
)
# Store scores
outputs['stability_scores'].append(1.0 - iter_result.max_potential / 3.0)
outputs['escape_scores'].append(iter_result.max_potential)
if iter_result.persist:
outputs['persist_scores'].append(iter_result.max_potential)
# Retrieve for query
retrieval_result = self.retriever.retrieve(query, k=5)
outputs['retrievals'].append(retrieval_result.items)
# Process noise items
for noise_item in batch.noise_items:
noise_encoding = self.retriever.encoder.encode(
noise_item, {'importance': 0.1, 'source': 'noise'}
)
path = self.quadtree.route_to_leaf(noise_encoding.complex_coord)
leaf_tile = self.quadtree.tiles[path[-1]]
iter_result = self.dynamics.iterate_write(
leaf_tile, noise_encoding.vector, noise_encoding.complex_coord,
{'importance': 0.1, 'source': 'noise'}
)
outputs['escape_scores'].append(iter_result.max_potential)
return outputs
def _aggregate_losses(self, epoch_losses: List[Dict[str, float]]) -> Dict[str, float]:
"""Aggregate losses across batches."""
if not epoch_losses:
return {}
aggregated = {}
for key in epoch_losses[0].keys():
values = [loss[key] for loss in epoch_losses if key in loss]
aggregated[f'avg_{key}'] = np.mean(values)
aggregated[f'std_{key}'] = np.std(values)
aggregated['epoch'] = self.current_epoch
return aggregated
def evaluate(self, test_batches: List[TrainingBatch]) -> Dict[str, float]:
"""Evaluate model on test data."""
with torch.no_grad():
test_losses = []
for batch in test_batches:
model_outputs = self._forward_pass(batch)
losses = self.loss_fn(batch, model_outputs)
test_losses.append({
'total': losses.total_loss.item(),
'retrieval': losses.retrieval_loss,
'stability': losses.stability_loss,
'escape': losses.escape_loss,
'margin': losses.margin_loss,
'renorm': losses.renorm_loss
})
return self._aggregate_losses(test_losses)
def get_training_stats(self) -> Dict[str, Any]:
"""Get training statistics."""
if not self.training_history:
return {'message': 'No training history available'}
latest = self.training_history[-1]
# Compute trends
if len(self.training_history) >= 2:
prev = self.training_history[-2]
trends = {
f'{key}_trend': latest[key] - prev[key]
for key in latest.keys()
if key.startswith('avg_') and key in prev
}
else:
trends = {}
return {
'current_epoch': self.current_epoch,
'latest_losses': latest,
'trends': trends,
'total_epochs_trained': len(self.training_history)
}
class SyntheticDataGenerator:
"""Generate synthetic training data for MandelMem."""
def __init__(self, vocab_size: int = 1000):
self.vocab_size = vocab_size
self.word_list = self._generate_vocabulary()
def _generate_vocabulary(self) -> List[str]:
"""Generate synthetic vocabulary."""
categories = {
'objects': ['car', 'house', 'tree', 'book', 'phone', 'computer', 'chair', 'table'],
'actions': ['run', 'jump', 'read', 'write', 'think', 'learn', 'create', 'build'],
'adjectives': ['big', 'small', 'red', 'blue', 'fast', 'slow', 'bright', 'dark'],
'concepts': ['memory', 'knowledge', 'wisdom', 'truth', 'beauty', 'justice', 'freedom']
}
vocab = []
for category, words in categories.items():
vocab.extend(words)
# Add numbers and common words
vocab.extend([str(i) for i in range(100)])
vocab.extend(['the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'from'])
return vocab[:self.vocab_size]
def generate_batch(self, batch_size: int = 32) -> TrainingBatch:
"""Generate a training batch."""
queries = []
targets = []
importance_labels = []
noise_items = []
metadata = []
for _ in range(batch_size):
# Generate query-target pair
target_words = np.random.choice(self.word_list, size=np.random.randint(3, 8))
target = ' '.join(target_words)
# Query is partial target with some noise
query_words = target_words[:np.random.randint(1, len(target_words))]
if np.random.random() < 0.3: # Add noise word
noise_word = np.random.choice(self.word_list)
query_words = np.append(query_words, noise_word)
query = ' '.join(query_words)
# Random importance
importance = np.random.beta(2, 2) # Bias toward middle values
# Metadata
meta = {
'importance': importance,
'source': np.random.choice(['user', 'system', 'external']),
'pii': np.random.random() < 0.1,
'repeats': np.random.poisson(1),
'recency_weight': np.random.exponential(0.5)
}
queries.append(query)
targets.append(target)
importance_labels.append(importance)
metadata.append(meta)
# Generate noise items
for _ in range(batch_size // 4):
noise_words = np.random.choice(self.word_list, size=np.random.randint(2, 6))
noise_items.append(' '.join(noise_words))
return TrainingBatch(
queries=queries,
targets=targets,
importance_labels=importance_labels,
noise_items=noise_items,
metadata=metadata
)
|