Check in space
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from gradio.components import Component
|
| 2 |
+
import torch
|
| 3 |
+
from hydra import Hydra
|
| 4 |
+
from transformers import AutoTokenizer
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from hydra import Hydra
|
| 7 |
+
import os
|
| 8 |
+
from typing import Any, Optional
|
| 9 |
+
|
| 10 |
+
model_name = "ellenhp/query2osm-bert-v1"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, padding=True)
|
| 12 |
+
model = Hydra.from_pretrained(model_name).to('cpu')
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class DatasetSaver(gr.FlaggingCallback):
|
| 16 |
+
inner: Optional[gr.HuggingFaceDatasetSaver] = None
|
| 17 |
+
|
| 18 |
+
def __init__(self, inner):
|
| 19 |
+
self.inner = inner
|
| 20 |
+
|
| 21 |
+
def setup(self, components: list[Component], flagging_dir: str):
|
| 22 |
+
self.inner.setup(components, flagging_dir)
|
| 23 |
+
|
| 24 |
+
def flag(self,
|
| 25 |
+
flag_data: list[Any],
|
| 26 |
+
flag_option: str = "",
|
| 27 |
+
username: str | None = None):
|
| 28 |
+
flag_data = [flag_data[0], {"label": flag_data[1]['label']}]
|
| 29 |
+
self.inner.flag(flag_data, flag_option, None)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
| 33 |
+
if HF_TOKEN is not None:
|
| 34 |
+
hf_writer = gr.HuggingFaceDatasetSaver(
|
| 35 |
+
HF_TOKEN, "osm-queries-crowdsourced", True, "data.csv", False)
|
| 36 |
+
else:
|
| 37 |
+
hf_writer = None
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
flag_callback = DatasetSaver(hf_writer)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def predict(input_query):
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
print(input_query)
|
| 46 |
+
input_text = input_query.strip().lower()
|
| 47 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 48 |
+
outputs = model.forward(inputs.input_ids)
|
| 49 |
+
return {classification[0]: classification[1] for classification in outputs.classifications[0]}
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
textbox = gr.Textbox(label="Query",
|
| 53 |
+
placeholder="Where can I get a quick bite to eat?")
|
| 54 |
+
label = gr.Label(label="Result", num_top_classes=5)
|
| 55 |
+
|
| 56 |
+
gradio_app = gr.Interface(
|
| 57 |
+
predict,
|
| 58 |
+
inputs=[textbox],
|
| 59 |
+
outputs=[label],
|
| 60 |
+
title="Query Classification",
|
| 61 |
+
allow_flagging="manual",
|
| 62 |
+
flagging_options=["potentially harmful", "wrong classification"],
|
| 63 |
+
flagging_callback=flag_callback,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
gradio_app.launch()
|
hydra.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import BertConfig, BertModel
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch
|
| 4 |
+
from typing import Optional, Union, Tuple, List
|
| 5 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 6 |
+
from torch.nn import CrossEntropyLoss
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class HydraConfig(BertConfig):
|
| 10 |
+
model_type = "hydra"
|
| 11 |
+
label_groups = None
|
| 12 |
+
|
| 13 |
+
def __init__(self, **kwargs):
|
| 14 |
+
super().__init__(**kwargs)
|
| 15 |
+
|
| 16 |
+
def num_labels(self):
|
| 17 |
+
return sum([len(group) for group in self.label_groups])
|
| 18 |
+
|
| 19 |
+
def distilbert_config(self):
|
| 20 |
+
return BertConfig(**self.__dict__)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class HydraSequenceClassifierOutput(SequenceClassifierOutput):
|
| 24 |
+
classifications: List[dict]
|
| 25 |
+
|
| 26 |
+
def __init__(self, classifications=None, **kwargs):
|
| 27 |
+
super().__init__(**kwargs)
|
| 28 |
+
self.classifications = classifications
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Hydra(BertModel):
|
| 32 |
+
config_class = HydraConfig
|
| 33 |
+
|
| 34 |
+
def __init__(self, config: HydraConfig):
|
| 35 |
+
super().__init__(config)
|
| 36 |
+
self.config = config
|
| 37 |
+
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
|
| 38 |
+
self.classifiers = nn.Linear(config.hidden_size, sum(
|
| 39 |
+
[len(group) for group in config.label_groups]))
|
| 40 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 41 |
+
|
| 42 |
+
self.embeddings.requires_grad_(False)
|
| 43 |
+
|
| 44 |
+
self.post_init()
|
| 45 |
+
|
| 46 |
+
def forward(
|
| 47 |
+
self,
|
| 48 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 49 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 50 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 51 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 52 |
+
labels: Optional[torch.LongTensor] = None,
|
| 53 |
+
output_attentions: Optional[bool] = None,
|
| 54 |
+
output_hidden_states: Optional[bool] = None,
|
| 55 |
+
return_dict: Optional[bool] = None,
|
| 56 |
+
) -> Union[SequenceClassifierOutput, Tuple[torch.Tensor, ...]]:
|
| 57 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 58 |
+
|
| 59 |
+
distilbert_output = super().forward(
|
| 60 |
+
input_ids=input_ids,
|
| 61 |
+
attention_mask=attention_mask,
|
| 62 |
+
head_mask=head_mask,
|
| 63 |
+
inputs_embeds=inputs_embeds,
|
| 64 |
+
output_attentions=output_attentions,
|
| 65 |
+
output_hidden_states=output_hidden_states,
|
| 66 |
+
return_dict=return_dict
|
| 67 |
+
)
|
| 68 |
+
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
|
| 69 |
+
pooled_output = hidden_state[:, 0] # (bs, dim)
|
| 70 |
+
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
|
| 71 |
+
pooled_output = nn.ReLU()(pooled_output) # (bs, dim)
|
| 72 |
+
pooled_output = self.dropout(pooled_output) # (bs, dim)
|
| 73 |
+
logits = self.classifiers(pooled_output) # (bs, num_labels)
|
| 74 |
+
|
| 75 |
+
loss = None
|
| 76 |
+
if labels is not None:
|
| 77 |
+
|
| 78 |
+
loss_fct = CrossEntropyLoss()
|
| 79 |
+
loss = loss_fct(logits, labels)
|
| 80 |
+
|
| 81 |
+
if not return_dict:
|
| 82 |
+
output = (logits,) + distilbert_output[1:]
|
| 83 |
+
return ((loss,) + output) if loss is not None else output
|
| 84 |
+
|
| 85 |
+
classifications = []
|
| 86 |
+
if logits.shape[0] == 1:
|
| 87 |
+
offset = 0
|
| 88 |
+
for group in self.config.label_groups:
|
| 89 |
+
inverted = {group[pair]: pair for pair in group}
|
| 90 |
+
softmax = nn.Softmax(dim=1)
|
| 91 |
+
output = softmax(logits[:, offset:offset + len(group)])
|
| 92 |
+
classification = []
|
| 93 |
+
for i, val in enumerate(output[0]):
|
| 94 |
+
classification.append((inverted[i], val.item()))
|
| 95 |
+
classification.sort(key=lambda x: x[1], reverse=True)
|
| 96 |
+
classifications.append(classification)
|
| 97 |
+
offset += len(group)
|
| 98 |
+
|
| 99 |
+
return HydraSequenceClassifierOutput(
|
| 100 |
+
loss=loss,
|
| 101 |
+
logits=logits,
|
| 102 |
+
hidden_states=distilbert_output.hidden_states,
|
| 103 |
+
attentions=distilbert_output.attentions,
|
| 104 |
+
classifications=classifications
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
def to(self, device):
|
| 108 |
+
super().to(device)
|
| 109 |
+
self.pre_classifier.to(device)
|
| 110 |
+
self.classifiers.to(device)
|
| 111 |
+
self.dropout.to(device)
|
| 112 |
+
return self
|