File size: 8,431 Bytes
64a7c78
 
 
 
 
 
 
9246c34
64a7c78
 
9246c34
64a7c78
9246c34
8e0e03b
64a7c78
7ea2417
 
64a7c78
 
 
 
98d4aa0
64a7c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6434756
64a7c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2cf2f9
 
64a7c78
 
 
 
 
 
 
 
ec02525
64a7c78
8e0e03b
 
 
 
 
 
 
 
 
 
 
 
 
2d5aace
64a7c78
936742e
64a7c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec02525
64a7c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec02525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9246c34
ec02525
2390ed0
2019874
 
04aa067
2019874
2d5aace
 
 
 
 
2019874
 
 
04aa067
 
 
7ea2417
 
2019874
 
9246c34
082b216
64a7c78
 
8968225
 
 
2019874
9246c34
e2cf2f9
2390ed0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch  # isort:skip

torch.manual_seed(42)
import json
import re
import unicodedata
from types import SimpleNamespace
import time
import numpy as np
import regex
from scipy.io.wavfile import write
from models import DurationNet, SynthesizerTrn
import os
import re

from process import print_percent_done

title = "LightSpeed: Vietnamese Male Voice TTS"
description = "Vietnam Male Voice TTS."
config_file = "config.json"
duration_model_path = "vbx_duration_model.pth"
lightspeed_model_path = "gen_619k.pth"
phone_set_file = "vbx_phone_set.json"
device = "cuda" if torch.cuda.is_available() else "cpu"
with open(config_file, "rb") as f:
    hps = json.load(f, object_hook=lambda x: SimpleNamespace(**x))

# load phone set json file
with open(phone_set_file, "r") as f:
    phone_set = json.load(f)

assert phone_set[0][1:-1] == "SEP"
assert "sil" in phone_set
sil_idx = phone_set.index("sil")

space_re = regex.compile(r"\s+")
number_re = regex.compile("([0-9]+)")
digits = ["không", "một", "hai", "ba", "bốn", "năm", "sáu", "bảy", "tám", "chín"]
num_re = regex.compile(r"([0-9.,]*[0-9])")
alphabet = "aàáảãạăằắẳẵặâầấẩẫậeèéẻẽẹêềếểễệiìíỉĩịoòóỏõọôồốổỗộơờớởỡợuùúủũụưừứửữựyỳýỷỹỵbcdđghklmnpqrstvx"
keep_text_and_num_re = regex.compile(rf"[^\s{alphabet}.,0-9]")
keep_text_re = regex.compile(rf"[^\s{alphabet}]")


def read_number(num: str) -> str:
    if len(num) == 1:
        return digits[int(num)]
    elif len(num) == 2 and num.isdigit():
        n = int(num)
        end = digits[n % 10]
        if n == 10:
            return "mười"
        if n % 10 == 5:
            end = "lăm"
        if n % 10 == 0:
            return digits[n // 10] + " mươi"
        elif n < 20:
            return "mười " + end
        else:
            if n % 10 == 1:
                end = "mốt"
            return digits[n // 10] + " mươi " + end
    elif len(num) == 3 and num.isdigit():
        n = int(num)
        if n % 100 == 0:
            return digits[n // 100] + " trăm"
        elif num[1] == "0":
            return digits[n // 100] + " trăm lẻ " + digits[n % 100]
        else:
            return digits[n // 100] + " trăm " + read_number(num[1:])
    elif len(num) >= 4 and len(num) <= 6 and num.isdigit():
        n = int(num)
        n1 = n // 1000
        return read_number(str(n1)) + " ngàn " + read_number(num[-3:])
    elif "," in num:
        n1, n2 = num.split(",")
        return read_number(n1) + " phẩy " + read_number(n2)
    elif "." in num:
        parts = num.split(".")
        if len(parts) == 2:
            if parts[1] == "000":
                return read_number(parts[0]) + " ngàn"
            elif parts[1].startswith("00"):
                end = digits[int(parts[1][2:])]
                return read_number(parts[0]) + " ngàn lẻ " + end
            else:
                return read_number(parts[0]) + " ngàn " + read_number(parts[1])
        elif len(parts) == 3:
            return (
                read_number(parts[0])
                + " triệu "
                + read_number(parts[1])
                + " ngàn "
                + read_number(parts[2])
            )
    return num


def text_to_phone_idx(text):
    # lowercase
    text = text.lower()
    # unicode normalize
    text = unicodedata.normalize("NFKC", text)
    text = text.replace(".", " . ")
    text = text.replace(",", " , ")
    text = text.replace(";", " ; ")
    text = text.replace(":", " : ")
    text = text.replace("!", " ! ")
    text = text.replace("?", " ? ")
    text = text.replace("(", " ( ")

    text = num_re.sub(r" \1 ", text)
    words = text.split()
    words = [read_number(w) if num_re.fullmatch(w) else w for w in words]
    text = " ".join(words)

    # remove redundant spaces
    text = re.sub(r"\s+", " ", text)
    # remove leading and trailing spaces
    text = text.strip()
    # convert words to phone indices
    tokens = []
    for c in text:
        # if c is "," or ".", add <sil> phone
        if c in ":,.!?;(":
            tokens.append(sil_idx)
        elif c in phone_set:
            tokens.append(phone_set.index(c))
        elif c == " ":
            # add <sep> phone
            tokens.append(0)
    if(len(tokens)==0):
        return tokens
    if tokens[0] != sil_idx:
        # insert <sil> phone at the beginning
        tokens = [sil_idx, 0] + tokens
    if tokens[-1] != sil_idx:
        tokens = tokens + [0, sil_idx]
    return tokens


def text_to_speech(duration_net, generator, text):

    # Convert Bible address
    text = re.sub(r"(\d+):(\d+)", r"chương \1 câu \2", text)

    # Convert Israel name
    # Function to capitalize each part of the name
    def capitalize_name(match):
        return match.group(0).replace("-", " ").title()

    # Apply the function to each match
    text = re.sub(r"\b\w+(?:-\w+)+\b", capitalize_name, text)

    # Split numbers from text
    text = re.sub(r"(\d+)(\D+)", r"\1 \2", text)

    phone_idx = text_to_phone_idx(text)

    batch = {
        "phone_idx": np.array([phone_idx]),
        "phone_length": np.array([len(phone_idx)]),
    }

    # predict phoneme duration
    phone_length = torch.from_numpy(batch["phone_length"].copy()).long().to(device)
    phone_idx = torch.from_numpy(batch["phone_idx"].copy()).long().to(device)
    with torch.inference_mode():
        phone_duration = duration_net(phone_idx, phone_length)[:, :, 0] * 1000
    phone_duration = torch.where(
        phone_idx == sil_idx, torch.clamp_min(phone_duration, 200), phone_duration
    )
    phone_duration = torch.where(phone_idx == 0, 0, phone_duration)

    # generate waveform
    end_time = torch.cumsum(phone_duration, dim=-1)
    start_time = end_time - phone_duration
    start_frame = start_time / 1000 * hps.data.sampling_rate / hps.data.hop_length
    end_frame = end_time / 1000 * hps.data.sampling_rate / hps.data.hop_length
    spec_length = end_frame.max(dim=-1).values
    pos = torch.arange(0, spec_length.item(), device=device)
    attn = torch.logical_and(
        pos[None, :, None] >= start_frame[:, None, :],
        pos[None, :, None] < end_frame[:, None, :],
    ).float()
    with torch.inference_mode():
        y_hat = generator.infer(
            phone_idx, phone_length, spec_length, attn, max_len=None, noise_scale=0.667
        )[0]
    wave = y_hat[0, 0].data.cpu().numpy()
    return (wave * (2**15)).astype(np.int16)


def load_models():
    duration_net = DurationNet(hps.data.vocab_size, 64, 4).to(device)
    duration_net.load_state_dict(torch.load(duration_model_path, map_location=device))
    duration_net = duration_net.eval()
    generator = SynthesizerTrn(
        hps.data.vocab_size,
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        **vars(hps.model),
    ).to(device)
    del generator.enc_q
    ckpt = torch.load(lightspeed_model_path, map_location=device)
    params = {}
    for k, v in ckpt["net_g"].items():
        k = k[7:] if k.startswith("module.") else k
        params[k] = v
    generator.load_state_dict(params, strict=False)
    del ckpt, params
    generator = generator.eval()
    return duration_net, generator


def speak(text,filename):
    duration_net, generator = load_models()
    paragraphs = text.split("\n")
    clips = []  # list of audio clips
    # silence = np.zeros(hps.data.sampling_rate // 4)
    count = 0;
    for paragraph in paragraphs:
        paragraph = paragraph.strip();

        #remove special characters (*, #, &, ^, @, [, ], {, })
        paragraph = re.sub(r"[*#&^@\[\]{}]", "", paragraph)

        if paragraph == "":
            continue
        clips.append(text_to_speech(duration_net, generator, paragraph))

        # print process percentage
        process = round(len(clips) / len(paragraphs) * 100)
        print_percent_done(process, 100, 50, 'Processing ' + filename)
    
        # clips.append(silence)
    y = np.concatenate(clips)
    #save audio to local hps.data.sampling_rate as wav file
    write('/kaggle/working/'+ filename+ str(time.time())+'.wav' ,hps.data.sampling_rate, y)
    return hps.data.sampling_rate, y

dir = '/kaggle/working/vi-tts/books'

for filename in os.listdir(dir):
    fs = open(dir + '/'+filename, "r")
    text = fs.read()
    speak(text,filename.split('.')[0])
    fs.close()
    print('Saved: '+filename)