import os import subprocess # Убираем pyenv os.environ.pop("PYENV_VERSION", None) # Установка зависимостей subprocess.run(["pip", "install", "torch", "wheel"], check=True) subprocess.run([ "pip", "install", "--no-build-isolation", "diso@git+https://github.com/SarahWeiii/diso.git" ], check=True) # Импорты (перенесены после установки зависимостей) import gradio as gr import uuid import torch import zipfile import requests import traceback import trimesh from trimesh.exchange.gltf import export_glb from inference_triposg import run_triposg from triposg.pipelines.pipeline_triposg import TripoSGPipeline from briarmbg import BriaRMBG from pygltflib import GLTF2, Scene, Node, Mesh, Buffer, BufferView, Accessor, BufferTarget, ComponentType, AccessorType import numpy as np import base64 print("Trimesh version:", trimesh.__version__) # Настройки устройства device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if device == "cuda" else torch.float32 # Загрузка весов weights_dir = "pretrained_weights" triposg_path = os.path.join(weights_dir, "TripoSG") rmbg_path = os.path.join(weights_dir, "RMBG-1.4") if not (os.path.exists(triposg_path) and os.path.exists(rmbg_path)): print("📦 Downloading pretrained weights...") url = "https://huggingface.co/datasets/endlesstools/pretrained-assets/resolve/main/pretrained_models.zip" zip_path = "pretrained_models.zip" with requests.get(url, stream=True) as r: r.raise_for_status() with open(zip_path, "wb") as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) print("📦 Extracting weights...") with zipfile.ZipFile(zip_path, "r") as zip_ref: zip_ref.extractall(weights_dir) os.remove(zip_path) print("✅ Weights ready.") # Загрузка моделей pipe = TripoSGPipeline.from_pretrained(triposg_path).to(device, dtype) rmbg_net = BriaRMBG.from_pretrained(rmbg_path).to(device) rmbg_net.eval() # Генерация .glb def generate(image_path, face_number=50000, guidance_scale=5.0, num_steps=25): print("[API CALL] image_path received:", image_path) print("[API CALL] File exists:", os.path.exists(image_path)) temp_id = str(uuid.uuid4()) output_path = f"/tmp/{temp_id}.glb" try: mesh = run_triposg( pipe=pipe, image_input=image_path, rmbg_net=rmbg_net, seed=42, num_inference_steps=int(num_steps), guidance_scale=float(guidance_scale), faces=int(face_number), ) if mesh is None or mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: raise ValueError("Mesh generation returned an empty mesh") vertices = mesh.vertices.astype(np.float32) indices = mesh.faces.astype(np.uint32).flatten() # Pack binary data vertex_bytes = vertices.tobytes() index_bytes = indices.tobytes() total_bytes = vertex_bytes + index_bytes buffer = Buffer(byteLength=len(total_bytes)) buffer_view_vert = BufferView( buffer=0, byteOffset=0, byteLength=len(vertex_bytes), target=BufferTarget.ARRAY_BUFFER.value ) buffer_view_index = BufferView( buffer=0, byteOffset=len(vertex_bytes), byteLength=len(index_bytes), target=BufferTarget.ELEMENT_ARRAY_BUFFER.value ) accessor_vert = Accessor( bufferView=0, byteOffset=0, componentType=ComponentType.FLOAT.value, count=len(vertices), type=AccessorType.VEC3.value, min=vertices.min(axis=0).tolist(), max=vertices.max(axis=0).tolist() ) accessor_index = Accessor( bufferView=1, byteOffset=0, componentType=ComponentType.UNSIGNED_INT.value, count=len(indices), type=AccessorType.SCALAR.value ) gltf = GLTF2( buffers=[buffer], bufferViews=[buffer_view_vert, buffer_view_index], accessors=[accessor_vert, accessor_index], meshes=[Mesh(primitives=[{ "attributes": {"POSITION": 0}, "indices": 1 }])], scenes=[Scene(nodes=[0])], nodes=[Node(mesh=0)], scene=0 ) # Inject binary blob gltf.set_binary_blob(total_bytes) gltf.save_binary(output_path) print(f"[DEBUG] Mesh saved to {output_path}") return output_path if os.path.exists(output_path) else None except Exception as e: print("[ERROR]", e) traceback.print_exc() return f"Error: {e}" # Интерфейс Gradio demo = gr.Interface( fn=generate, inputs=gr.Image(type="filepath", label="Upload image"), outputs=gr.File(label="Download .glb"), title="TripoSG Image to 3D", description="Upload an image to generate a 3D model (.glb)", ) # Запуск demo.launch()