Spaces:
Sleeping
Sleeping
File size: 6,506 Bytes
1bc9c1f 4a475b2 1bc9c1f 4a475b2 d0237b3 1bc9c1f d0237b3 1bc9c1f 4a475b2 480c04e d0237b3 1bc9c1f d0237b3 4a475b2 d0237b3 1bc9c1f d0237b3 4a475b2 480c04e d0237b3 480c04e 4a475b2 1bc9c1f d0237b3 4a475b2 1bc9c1f 4a475b2 1bc9c1f 480c04e 1bc9c1f d0237b3 1bc9c1f d0237b3 1bc9c1f d0237b3 1bc9c1f d0237b3 1bc9c1f d0237b3 4a475b2 1bc9c1f d0237b3 1bc9c1f d0237b3 4a475b2 d0237b3 4a475b2 1bc9c1f d0237b3 4a475b2 d0237b3 4a475b2 d0237b3 1bc9c1f d0237b3 1bc9c1f d0237b3 1bc9c1f d0237b3 1bc9c1f d0237b3 1bc9c1f 480c04e 1bc9c1f 4a475b2 1bc9c1f 4a475b2 1bc9c1f d0237b3 4a475b2 1bc9c1f 4a475b2 1bc9c1f 4a475b2 1bc9c1f 4a475b2 1bc9c1f 4a475b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import os, tempfile
import numpy as np
import torch
import gradio as gr
from diffusers import LTXPipeline, AutoModel
from diffusers.hooks import apply_group_offloading
from diffusers.utils import export_to_video
# --------------------------------------------
# ์๊ตฌ ํจํค์ง(Spaces):
# requirements.txt:
# torch>=2.2
# torchvision>=0.17
# accelerate>=0.28.0
# transformers>=4.40.0
# diffusers>=0.31.0
# safetensors>=0.4.2
# sentencepiece>=0.2.0
# gradio>=4.32.0
# imageio>=2.34.0
# imageio-ffmpeg>=0.4.9
# packages.txt:
# ffmpeg
# --------------------------------------------
def load_pipeline():
use_cuda = torch.cuda.is_available()
device = "cuda" if use_cuda else "cpu"
# CPU๋ float16/float8 ๋ถ๊ฐ โ float32๋ก
dtype = torch.bfloat16 if use_cuda else torch.float32
transformer = AutoModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="transformer",
torch_dtype=dtype,
# LTXPipeline์ trust_remote_code๋ฅผ ๋ฌด์ํ์ง๋ง ๋ฃ์ด๋ ๋ฌดํด
trust_remote_code=True,
variant="bf16" if (use_cuda and dtype == torch.bfloat16) else None,
)
# FP8์ ๊ฐ๋ฅํ ๊ฒฝ์ฐ์๋ง ์๋
fp8_ok = False
if use_cuda:
try:
transformer.enable_layerwise_casting(
storage_dtype=torch.float8_e4m3fn, compute_dtype=dtype
)
fp8_ok = True
except Exception:
fp8_ok = False
pipe = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video",
transformer=transformer,
torch_dtype=dtype,
trust_remote_code=True,
variant="bf16" if (use_cuda and dtype == torch.bfloat16) else None,
).to(device)
offload_ok = False
if use_cuda:
try:
onload_device = torch.device(device)
offload_device = torch.device("cpu")
pipe.transformer.enable_group_offload(
onload_device=onload_device,
offload_device=offload_device,
offload_type="leaf_level",
use_stream=True,
)
apply_group_offloading(
pipe.text_encoder,
onload_device=onload_device,
offload_type="block_level",
num_blocks_per_group=2,
)
apply_group_offloading(
pipe.vae,
onload_device=onload_device,
offload_type="leaf_level",
)
offload_ok = True
except Exception:
offload_ok = False
return pipe, fp8_ok, offload_ok, device
PIPE, FP8_OK, OFFLOAD_OK, DEVICE = load_pipeline()
def _to_uint8_frames(frames):
# (T,H,W,C) torch/float โ numpy uint8 ๋ก ์์ ๋ณํ
if isinstance(frames, torch.Tensor):
frames = frames.detach().to("cpu").numpy()
if frames.ndim == 3: # (T,H,W) โ (T,H,W,1)
frames = frames[..., None]
assert frames.ndim == 4, f"Unexpected frames shape: {frames.shape}"
if frames.dtype != np.uint8:
mx = float(frames.max() if frames.size else 1.0)
if mx <= 1.0:
frames = (np.clip(frames, 0, 1) * 255).astype(np.uint8)
else:
frames = np.clip(frames, 0, 255).astype(np.uint8)
return frames
def generate_video(
prompt, negative_prompt,
width, height, num_frames, fps,
decode_timestep, decode_noise_scale,
steps, seed
):
# ์๋
g = None
try:
s = int(seed)
if s >= 0:
g = torch.Generator(device=DEVICE).manual_seed(s)
except Exception:
pass
# -------- ์ถ๋ก --------
with torch.inference_mode():
out = PIPE(
prompt=(prompt or "").strip(),
negative_prompt=(negative_prompt or "").strip() or None,
width=int(width),
height=int(height),
num_frames=int(num_frames),
# โ
LTXPipeline์๋ fps ์ธ์๊ฐ ์์ต๋๋ค.
decode_timestep=float(decode_timestep),
decode_noise_scale=float(decode_noise_scale),
num_inference_steps=int(steps),
generator=g,
)
frames = out.frames[0]
frames = _to_uint8_frames(frames)
# -------- ์ ์ฅ --------
tmpdir = tempfile.mkdtemp()
save_path = os.path.join(tmpdir, "output.mp4")
target_fps = int(fps)
# ์ฐ์ diffusers saver
try:
export_to_video(frames, save_path, fps=target_fps)
except Exception:
# ํด๋ฐฑ: imageio-ffmpeg
import imageio.v3 as iio
iio.imwrite(save_path, frames, fps=target_fps, codec="libx264")
info = (
f"FP8: {'ON' if FP8_OK else 'OFF'} | "
f"Offloading: {'ON' if OFFLOAD_OK else 'OFF'} | "
f"Device: {DEVICE} | "
f"Frames: {frames.shape} | FPS: {target_fps}"
)
return save_path, info
# ----------------------------- Gradio UI -----------------------------
with gr.Blocks(title="LTX-Video โ Prompt to Short Video") as demo:
gr.Markdown("## ๐ฌ LTX-Video โ Prompt to Short Video")
with gr.Row():
prompt_in = gr.Textbox(
label="Prompt",
lines=6,
value="A cinematic close-up of a smiling woman under warm sunset light."
)
neg_in = gr.Textbox(
label="Negative Prompt",
lines=4,
value="worst quality, inconsistent motion, blurry, jittery, distorted"
)
with gr.Row():
width_in = gr.Slider(256, 1024, value=768, step=8, label="Width")
height_in = gr.Slider(256, 1024, value=512, step=8, label="Height")
with gr.Row():
frames_in = gr.Slider(17, 241, value=65, step=2, label="num_frames")
fps_in = gr.Slider(8, 30, value=24, step=1, label="FPS (save only)")
with gr.Row():
dt_in = gr.Slider(0.0, 0.2, value=0.03, step=0.001, label="decode_timestep")
dns_in = gr.Slider(0.0, 0.2, value=0.025, step=0.001, label="decode_noise_scale")
steps_in = gr.Slider(10, 75, value=40, step=1, label="num_inference_steps")
seed_in = gr.Number(value=-1, label="Seed (>=0 to fix)")
gen_btn = gr.Button("๐ฅ Generate", variant="primary")
video_out = gr.Video(label="Output", autoplay=True)
info_out = gr.Markdown()
gen_btn.click(
fn=generate_video,
inputs=[prompt_in, neg_in, width_in, height_in, frames_in, fps_in, dt_in, dns_in, steps_in, seed_in],
outputs=[video_out, info_out]
)
demo.queue().launch()
|