Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,12 @@ from sklearn.cluster import KMeans
|
|
4 |
from folium.plugins import MarkerCluster
|
5 |
import requests
|
6 |
from io import BytesIO
|
|
|
7 |
|
8 |
# Load data from Excel URL with error handling
|
9 |
def load_data(url):
|
10 |
try:
|
11 |
-
|
12 |
response = requests.get(url)
|
13 |
if response.status_code == 200:
|
14 |
lat_long_data = pd.read_excel(BytesIO(response.content), sheet_name="lat long", engine='openpyxl')
|
@@ -25,19 +26,19 @@ def load_data(url):
|
|
25 |
|
26 |
# Strip any extra spaces from column names
|
27 |
merged_data.columns = merged_data.columns.str.strip()
|
28 |
-
|
29 |
return merged_data
|
30 |
else:
|
31 |
-
|
32 |
return pd.DataFrame()
|
33 |
except Exception as e:
|
34 |
-
|
35 |
return pd.DataFrame()
|
36 |
|
37 |
# Perform clustering to find data center location
|
38 |
def find_data_center(df, n_clusters=1):
|
39 |
if df.empty:
|
40 |
-
|
41 |
return None
|
42 |
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(df[["latitude", "longitude"]])
|
43 |
return kmeans.cluster_centers_
|
@@ -45,7 +46,7 @@ def find_data_center(df, n_clusters=1):
|
|
45 |
# Plot the map with markers
|
46 |
def plot_map(df, center):
|
47 |
if df.empty:
|
48 |
-
|
49 |
return None
|
50 |
|
51 |
map = folium.Map(location=[center[0][0], center[0][1]], zoom_start=10)
|
@@ -76,7 +77,7 @@ def plot_map(df, center):
|
|
76 |
# Calculate the impact of data center on latency and bandwidth
|
77 |
def calculate_impact(df, center):
|
78 |
if df.empty:
|
79 |
-
|
80 |
return None
|
81 |
avg_latency_before = df['latency'].mean()
|
82 |
avg_download_before = df['download_speed'].mean()
|
@@ -105,7 +106,8 @@ def display_impact(latency_reduction, download_increase, upload_increase, avg_la
|
|
105 |
}
|
106 |
}
|
107 |
|
108 |
-
|
|
|
109 |
|
110 |
# Main function to run the application
|
111 |
def main():
|
@@ -113,28 +115,26 @@ def main():
|
|
113 |
df = load_data(url)
|
114 |
|
115 |
if df.empty:
|
116 |
-
|
117 |
return
|
118 |
|
119 |
# Find the data center location using clustering
|
120 |
center = find_data_center(df)
|
121 |
if center is None:
|
122 |
-
|
123 |
return
|
124 |
|
125 |
-
# Create the map and
|
126 |
map = plot_map(df, center)
|
127 |
if map:
|
128 |
-
|
|
|
|
|
129 |
|
130 |
# Calculate the impact of adding the data center
|
131 |
latency_reduction, download_increase, upload_increase, avg_latency_before, avg_download_before, avg_upload_before = calculate_impact(df, center)
|
132 |
if latency_reduction is not None:
|
133 |
-
|
134 |
-
print("Impact of Data Center on Latency and Bandwidth:")
|
135 |
-
print(impact_data)
|
136 |
-
|
137 |
-
print("Map has been saved as index.html.")
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
main()
|
|
|
4 |
from folium.plugins import MarkerCluster
|
5 |
import requests
|
6 |
from io import BytesIO
|
7 |
+
import streamlit as st
|
8 |
|
9 |
# Load data from Excel URL with error handling
|
10 |
def load_data(url):
|
11 |
try:
|
12 |
+
st.write(f"Loading data from {url}...")
|
13 |
response = requests.get(url)
|
14 |
if response.status_code == 200:
|
15 |
lat_long_data = pd.read_excel(BytesIO(response.content), sheet_name="lat long", engine='openpyxl')
|
|
|
26 |
|
27 |
# Strip any extra spaces from column names
|
28 |
merged_data.columns = merged_data.columns.str.strip()
|
29 |
+
st.write("Data loaded successfully")
|
30 |
return merged_data
|
31 |
else:
|
32 |
+
st.write(f"Failed to load data. Status code: {response.status_code}")
|
33 |
return pd.DataFrame()
|
34 |
except Exception as e:
|
35 |
+
st.write(f"Error loading data: {e}")
|
36 |
return pd.DataFrame()
|
37 |
|
38 |
# Perform clustering to find data center location
|
39 |
def find_data_center(df, n_clusters=1):
|
40 |
if df.empty:
|
41 |
+
st.write("Dataframe is empty, skipping clustering")
|
42 |
return None
|
43 |
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(df[["latitude", "longitude"]])
|
44 |
return kmeans.cluster_centers_
|
|
|
46 |
# Plot the map with markers
|
47 |
def plot_map(df, center):
|
48 |
if df.empty:
|
49 |
+
st.write("Dataframe is empty, skipping map plotting")
|
50 |
return None
|
51 |
|
52 |
map = folium.Map(location=[center[0][0], center[0][1]], zoom_start=10)
|
|
|
77 |
# Calculate the impact of data center on latency and bandwidth
|
78 |
def calculate_impact(df, center):
|
79 |
if df.empty:
|
80 |
+
st.write("Dataframe is empty, skipping impact calculation")
|
81 |
return None
|
82 |
avg_latency_before = df['latency'].mean()
|
83 |
avg_download_before = df['download_speed'].mean()
|
|
|
106 |
}
|
107 |
}
|
108 |
|
109 |
+
st.write("Impact of Data Center on Latency and Bandwidth:")
|
110 |
+
st.write(impact_data)
|
111 |
|
112 |
# Main function to run the application
|
113 |
def main():
|
|
|
115 |
df = load_data(url)
|
116 |
|
117 |
if df.empty:
|
118 |
+
st.write("No data to process, exiting application.")
|
119 |
return
|
120 |
|
121 |
# Find the data center location using clustering
|
122 |
center = find_data_center(df)
|
123 |
if center is None:
|
124 |
+
st.write("Could not find data center, exiting application.")
|
125 |
return
|
126 |
|
127 |
+
# Create the map and embed it in the Streamlit app
|
128 |
map = plot_map(df, center)
|
129 |
if map:
|
130 |
+
from io import BytesIO
|
131 |
+
map_html = map._repr_html_() # Get the HTML representation of the map
|
132 |
+
st.markdown(map_html, unsafe_allow_html=True)
|
133 |
|
134 |
# Calculate the impact of adding the data center
|
135 |
latency_reduction, download_increase, upload_increase, avg_latency_before, avg_download_before, avg_upload_before = calculate_impact(df, center)
|
136 |
if latency_reduction is not None:
|
137 |
+
display_impact(latency_reduction, download_increase, upload_increase, avg_latency_before, avg_download_before, avg_upload_before)
|
|
|
|
|
|
|
|
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
main()
|