import gradio as gr import pandas as pd import numpy as np import json import re import io import asyncio import threading import time import gc from datetime import datetime, timedelta from typing import List, Dict, Tuple, Optional, Any from collections import Counter, defaultdict import sqlite3 import hashlib import logging from dataclasses import dataclass from enum import Enum # Lazy import heavy modules transformers = None plotly = None torch = None def lazy_import(): """Lazy load heavy modules to reduce startup time""" global transformers, plotly, torch if transformers is None: import transformers as tf transformers = tf if plotly is None: import plotly.graph_objects as go from plotly.subplots import make_subplots plotly = type('plotly', (), {'go': go, 'make_subplots': make_subplots})() if torch is None: try: import torch as t torch = t except ImportError: torch = None # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class AnalysisType(Enum): SENTIMENT = "sentiment" ASPECT = "aspect" EMOTION = "emotion" FAKE_DETECTION = "fake_detection" QUALITY = "quality" RECOMMENDATION = "recommendation" TREND = "trend" COMPETITION = "competition" @dataclass class ReviewData: """Review data structure""" text: str timestamp: Optional[str] = None rating: Optional[float] = None username: Optional[str] = None product_id: Optional[str] = None verified_purchase: Optional[bool] = None helpful_votes: Optional[int] = None class ModelManager: """Model manager - supports lazy loading and resource management""" def __init__(self): self._models = {} self._loading = {} self.max_models_in_memory = 3 self.model_usage = {} def get_model(self, model_name: str, model_type: str = "sentiment"): """Get model with lazy loading support""" if model_name in self._models: self.model_usage[model_name] = time.time() return self._models[model_name] if model_name in self._loading: # Wait for other threads to finish loading while model_name in self._loading: time.sleep(0.1) return self._models.get(model_name) return self._load_model(model_name, model_type) def _load_model(self, model_name: str, model_type: str): """Load model""" self._loading[model_name] = True try: lazy_import() if model_type == "sentiment": model = transformers.pipeline( "sentiment-analysis", model=model_name, device=-1 # CPU ) elif model_type == "emotion": model = transformers.pipeline( "text-classification", model=model_name, device=-1 ) elif model_type == "ner": model = transformers.pipeline( "ner", model=model_name, aggregation_strategy="simple", device=-1 ) else: raise ValueError(f"Unsupported model type: {model_type}") # Memory management if len(self._models) >= self.max_models_in_memory: self._cleanup_oldest_model() self._models[model_name] = model self.model_usage[model_name] = time.time() logger.info(f"Successfully loaded model: {model_name}") except Exception as e: logger.error(f"Failed to load model {model_name}: {str(e)}") model = None finally: self._loading.pop(model_name, None) return model def _cleanup_oldest_model(self): """Clean up the least recently used model""" if not self.model_usage: return oldest_model = min(self.model_usage.items(), key=lambda x: x[1])[0] self._models.pop(oldest_model, None) self.model_usage.pop(oldest_model, None) # Force garbage collection gc.collect() if torch and torch.cuda.is_available(): torch.cuda.empty_cache() class AdvancedReviewAnalyzer: """Advanced Review Analyzer""" def __init__(self): self.model_manager = ModelManager() self.db_path = "advanced_reviews.db" self._init_db() # Configure different models self.models_config = { "sentiment": "cardiffnlp/twitter-roberta-base-sentiment-latest", "emotion": "j-hartmann/emotion-english-distilroberta-base", "chinese_sentiment": "uer/roberta-base-finetuned-chinanews-chinese", } # Cache system self.cache = {} self.cache_ttl = 3600 # 1 hour # Sentiment lexicon self.sentiment_lexicon = self._load_sentiment_lexicon() # Aspect keyword mapping self.aspect_keywords = { 'product_quality': ['quality', 'build', 'material', 'durable', 'sturdy', 'solid', 'cheap', 'flimsy', 'fragile'], 'price_value': ['price', 'cost', 'expensive', 'cheap', 'value', 'money', 'affordable', 'overpriced', 'worth'], 'shipping_delivery': ['delivery', 'shipping', 'fast', 'slow', 'quick', 'late', 'packaging', 'arrived'], 'customer_service': ['service', 'support', 'staff', 'helpful', 'rude', 'friendly', 'responsive'], 'design_appearance': ['design', 'look', 'beautiful', 'ugly', 'style', 'appearance', 'color', 'attractive'], 'usability': ['easy', 'difficult', 'simple', 'complex', 'user-friendly', 'intuitive', 'confusing'], 'performance': ['performance', 'speed', 'fast', 'slow', 'efficient', 'reliable', 'works', 'functions'], 'size_fit': ['size', 'fit', 'large', 'small', 'perfect', 'tight', 'loose', 'dimensions'] } # Emotion emojis self.emotion_emojis = { 'joy': 'đ', 'sadness': 'đĸ', 'anger': 'đ ', 'fear': 'đ¨', 'surprise': 'đŽ', 'disgust': 'đ¤ĸ', 'love': 'â¤ī¸' } def _init_db(self): """Initialize database""" conn = sqlite3.connect(self.db_path) conn.execute(''' CREATE TABLE IF NOT EXISTS analysis_cache ( id TEXT PRIMARY KEY, analysis_type TEXT, data TEXT, timestamp DATETIME, expires_at DATETIME ) ''') conn.execute(''' CREATE TABLE IF NOT EXISTS usage_analytics ( id INTEGER PRIMARY KEY, user_session TEXT, analysis_type TEXT, review_count INTEGER, processing_time REAL, timestamp DATETIME ) ''') conn.execute(''' CREATE TABLE IF NOT EXISTS feedback ( id INTEGER PRIMARY KEY, session_id TEXT, rating INTEGER, comment TEXT, timestamp DATETIME ) ''') conn.close() def _load_sentiment_lexicon(self): """Load sentiment lexicon""" # Simplified sentiment lexicon return { 'positive': ['excellent', 'amazing', 'great', 'good', 'perfect', 'wonderful', 'fantastic', 'outstanding', 'superb', 'brilliant', 'awesome', 'love', 'recommend'], 'negative': ['terrible', 'awful', 'bad', 'horrible', 'disgusting', 'disappointing', 'waste', 'useless', 'regret', 'hate', 'worst', 'broken'] } def _get_cache_key(self, data: str, analysis_type: str) -> str: """Generate cache key""" return hashlib.md5(f"{analysis_type}:{data}".encode()).hexdigest() def _get_from_cache(self, cache_key: str) -> Optional[Dict]: """Get results from cache""" conn = sqlite3.connect(self.db_path) cursor = conn.execute( "SELECT data FROM analysis_cache WHERE id = ? AND expires_at > ?", (cache_key, datetime.now()) ) result = cursor.fetchone() conn.close() if result: return json.loads(result[0]) return None def _save_to_cache(self, cache_key: str, data: Dict, analysis_type: str): """Save to cache""" expires_at = datetime.now() + timedelta(seconds=self.cache_ttl) conn = sqlite3.connect(self.db_path) conn.execute( "INSERT OR REPLACE INTO analysis_cache (id, analysis_type, data, timestamp, expires_at) VALUES (?, ?, ?, ?, ?)", (cache_key, analysis_type, json.dumps(data), datetime.now(), expires_at) ) conn.commit() conn.close() def preprocess_reviews(self, reviews: List[str]) -> List[ReviewData]: """Preprocess review data""" processed_reviews = [] for review in reviews: if not review or len(review.strip()) < 10: continue # Clean text clean_text = re.sub(r'http\S+', '', review) # Remove URLs clean_text = re.sub(r'@\w+', '', clean_text) # Remove mentions clean_text = re.sub(r'#\w+', '', clean_text) # Remove hashtags clean_text = re.sub(r'\s+', ' ', clean_text).strip() # Normalize whitespace if clean_text: processed_reviews.append(ReviewData(text=clean_text)) return processed_reviews def analyze_sentiment_advanced(self, reviews: List[str], language: str = "en") -> Dict: """Advanced sentiment analysis""" cache_key = self._get_cache_key(str(reviews), "sentiment_advanced") cached_result = self._get_from_cache(cache_key) if cached_result: return cached_result processed_reviews = self.preprocess_reviews(reviews) if not processed_reviews: return {"error": "No valid reviews to analyze"} # Select appropriate model model_name = self.models_config.get("chinese_sentiment" if language == "zh" else "sentiment") sentiment_model = self.model_manager.get_model(model_name, "sentiment") if not sentiment_model: return {"error": "Failed to load sentiment model"} results = [] sentiment_counts = defaultdict(int) confidence_scores = [] try: for review_data in processed_reviews: # Use model for analysis model_result = sentiment_model(review_data.text)[0] # Normalize labels label = model_result['label'].lower() if 'pos' in label: sentiment = 'positive' elif 'neg' in label: sentiment = 'negative' else: sentiment = 'neutral' confidence = float(model_result['score']) # Lexicon enhancement lexicon_boost = self._get_lexicon_sentiment(review_data.text) if lexicon_boost: confidence = min(confidence + 0.1, 1.0) sentiment_counts[sentiment] += 1 confidence_scores.append(confidence) results.append({ 'text': review_data.text[:100] + '...' if len(review_data.text) > 100 else review_data.text, 'sentiment': sentiment, 'confidence': round(confidence, 3), 'lexicon_matched': lexicon_boost is not None }) except Exception as e: logger.error(f"Sentiment analysis error: {str(e)}") return {"error": f"Analysis failed: {str(e)}"} # Calculate statistics total_reviews = len(results) sentiment_percentages = {k: round(v/total_reviews*100, 1) for k, v in sentiment_counts.items()} avg_confidence = round(np.mean(confidence_scores), 3) if confidence_scores else 0 result = { 'summary': sentiment_percentages, 'average_confidence': avg_confidence, 'total_reviews': total_reviews, 'details': results, 'insights': self._generate_sentiment_insights(sentiment_percentages, avg_confidence) } self._save_to_cache(cache_key, result, "sentiment_advanced") return result def _get_lexicon_sentiment(self, text: str) -> Optional[str]: """Get sentiment based on lexicon""" text_lower = text.lower() pos_count = sum(1 for word in self.sentiment_lexicon['positive'] if word in text_lower) neg_count = sum(1 for word in self.sentiment_lexicon['negative'] if word in text_lower) if pos_count > neg_count: return 'positive' elif neg_count > pos_count: return 'negative' return None def _generate_sentiment_insights(self, percentages: Dict, avg_confidence: float) -> List[str]: """Generate sentiment analysis insights""" insights = [] positive_pct = percentages.get('positive', 0) negative_pct = percentages.get('negative', 0) if positive_pct > 70: insights.append("đ Product receives overwhelmingly positive reviews with high customer satisfaction") elif positive_pct > 50: insights.append("â Product has generally positive reviews but there's room for improvement") elif negative_pct > 50: insights.append("â ī¸ Product has significant issues that need attention based on customer feedback") else: insights.append("đ Product reviews are relatively neutral, requiring more data for analysis") if avg_confidence > 0.8: insights.append("đ¯ High confidence in analysis results with good prediction accuracy") elif avg_confidence < 0.6: insights.append("â Some reviews have ambiguous sentiment, recommend manual review") return insights def analyze_emotions(self, reviews: List[str]) -> Dict: """Emotion analysis (fine-grained emotions)""" cache_key = self._get_cache_key(str(reviews), "emotions") cached_result = self._get_from_cache(cache_key) if cached_result: return cached_result processed_reviews = self.preprocess_reviews(reviews) if not processed_reviews: return {"error": "No valid reviews to analyze"} emotion_model = self.model_manager.get_model(self.models_config["emotion"], "emotion") if not emotion_model: return {"error": "Failed to load emotion model"} emotion_counts = defaultdict(int) results = [] try: for review_data in processed_reviews: emotion_result = emotion_model(review_data.text)[0] emotion = emotion_result['label'].lower() confidence = float(emotion_result['score']) emotion_counts[emotion] += 1 results.append({ 'text': review_data.text[:100] + '...' if len(review_data.text) > 100 else review_data.text, 'emotion': emotion, 'emoji': self.emotion_emojis.get(emotion, 'đ'), 'confidence': round(confidence, 3) }) except Exception as e: logger.error(f"Emotion analysis error: {str(e)}") return {"error": f"Analysis failed: {str(e)}"} total_reviews = len(results) emotion_percentages = {k: round(v/total_reviews*100, 1) for k, v in emotion_counts.items()} result = { 'summary': emotion_percentages, 'total_reviews': total_reviews, 'details': results, 'dominant_emotion': max(emotion_percentages.items(), key=lambda x: x[1])[0] if emotion_percentages else 'neutral' } self._save_to_cache(cache_key, result, "emotions") return result def analyze_aspects_advanced(self, reviews: List[str]) -> Dict: """Advanced aspect-based sentiment analysis (ABSA)""" cache_key = self._get_cache_key(str(reviews), "aspects_advanced") cached_result = self._get_from_cache(cache_key) if cached_result: return cached_result processed_reviews = self.preprocess_reviews(reviews) if not processed_reviews: return {"error": "No valid reviews to analyze"} sentiment_model = self.model_manager.get_model(self.models_config["sentiment"], "sentiment") if not sentiment_model: return {"error": "Failed to load sentiment model"} aspect_sentiments = defaultdict(lambda: defaultdict(int)) aspect_mentions = defaultdict(list) detailed_aspects = [] try: for review_data in processed_reviews: review_text = review_data.text.lower() # Get overall review sentiment overall_sentiment = sentiment_model(review_data.text)[0] overall_label = 'positive' if 'pos' in overall_sentiment['label'].lower() else 'negative' # Detect aspect mentions for aspect, keywords in self.aspect_keywords.items(): for keyword in keywords: if keyword in review_text: # Extract aspect-related sentences sentences = re.split(r'[.!?]', review_data.text) relevant_sentences = [s.strip() for s in sentences if keyword in s.lower()] if relevant_sentences: # Perform sentiment analysis on relevant sentences sentence_text = ' '.join(relevant_sentences) try: aspect_sentiment_result = sentiment_model(sentence_text)[0] aspect_sentiment = 'positive' if 'pos' in aspect_sentiment_result['label'].lower() else 'negative' confidence = float(aspect_sentiment_result['score']) except: aspect_sentiment = overall_label confidence = 0.5 aspect_sentiments[aspect][aspect_sentiment] += 1 aspect_mentions[aspect].append({ 'text': sentence_text, 'sentiment': aspect_sentiment, 'confidence': round(confidence, 3) }) detailed_aspects.append({ 'aspect': aspect, 'keyword': keyword, 'sentence': sentence_text, 'sentiment': aspect_sentiment, 'confidence': round(confidence, 3) }) break except Exception as e: logger.error(f"Aspect analysis error: {str(e)}") return {"error": f"Analysis failed: {str(e)}"} # Calculate aspect sentiment scores aspect_scores = {} for aspect, sentiments in aspect_sentiments.items(): total = sum(sentiments.values()) if total > 0: positive_pct = sentiments['positive'] / total * 100 negative_pct = sentiments['negative'] / total * 100 aspect_scores[aspect] = { 'positive_percentage': round(positive_pct, 1), 'negative_percentage': round(negative_pct, 1), 'total_mentions': total, 'sentiment_score': round((positive_pct - negative_pct) / 100, 2) # Score from -1 to 1 } # Sort aspects top_positive_aspects = sorted(aspect_scores.items(), key=lambda x: x[1]['sentiment_score'], reverse=True)[:5] top_negative_aspects = sorted(aspect_scores.items(), key=lambda x: x[1]['sentiment_score'])[:5] result = { 'aspect_scores': aspect_scores, 'top_positive_aspects': [(k, v) for k, v in top_positive_aspects], 'top_negative_aspects': [(k, v) for k, v in top_negative_aspects], 'detailed_aspects': detailed_aspects[:50], # Limit detailed results 'total_aspects_found': len(aspect_scores), 'insights': self._generate_aspect_insights(aspect_scores) } self._save_to_cache(cache_key, result, "aspects_advanced") return result def _generate_aspect_insights(self, aspect_scores: Dict) -> List[str]: """Generate aspect analysis insights""" insights = [] if not aspect_scores: return ["No clear product aspects detected, recommend adding more review data"] # Find best and worst aspects best_aspect = max(aspect_scores.items(), key=lambda x: x[1]['sentiment_score']) worst_aspect = min(aspect_scores.items(), key=lambda x: x[1]['sentiment_score']) insights.append(f"đ Best performing aspect: {best_aspect[0]} (score: {best_aspect[1]['sentiment_score']})") insights.append(f"â ī¸ Needs improvement: {worst_aspect[0]} (score: {worst_aspect[1]['sentiment_score']})") # Mention frequency analysis most_mentioned = max(aspect_scores.items(), key=lambda x: x[1]['total_mentions']) insights.append(f"đ Most discussed aspect: {most_mentioned[0]} ({most_mentioned[1]['total_mentions']} mentions)") return insights def detect_fake_reviews_advanced(self, reviews: List[str], metadata: Dict = None) -> Dict: """Advanced fake review detection""" cache_key = self._get_cache_key(str(reviews) + str(metadata), "fake_advanced") cached_result = self._get_from_cache(cache_key) if cached_result: return cached_result processed_reviews = self.preprocess_reviews(reviews) if not processed_reviews: return {"error": "No valid reviews to analyze"} fake_indicators = [] for i, review_data in enumerate(processed_reviews): indicators = self._analyze_fake_indicators(review_data, i, metadata) fake_indicators.append(indicators) # Overall pattern analysis pattern_analysis = self._analyze_review_patterns(processed_reviews, metadata) # Calculate final scores total_suspicious = sum(1 for ind in fake_indicators if ind['risk_score'] > 0.6) authenticity_rate = round((len(fake_indicators) - total_suspicious) / len(fake_indicators) * 100, 1) result = { 'summary': { 'total_reviews': len(fake_indicators), 'suspicious_reviews': total_suspicious, 'authenticity_rate': authenticity_rate, 'risk_level': 'High' if authenticity_rate < 60 else 'Medium' if authenticity_rate < 80 else 'Low' }, 'individual_analysis': fake_indicators, 'pattern_analysis': pattern_analysis, 'recommendations': self._generate_fake_detection_recommendations(authenticity_rate, pattern_analysis) } self._save_to_cache(cache_key, result, "fake_advanced") return result def _analyze_fake_indicators(self, review_data: ReviewData, index: int, metadata: Dict) -> Dict: """Analyze fake indicators for individual review""" text = review_data.text risk_score = 0.0 flags = [] # Text length check if len(text) < 30: risk_score += 0.2 flags.append("too_short") elif len(text) > 1000: risk_score += 0.1 flags.append("unusually_long") # Vocabulary diversity words = text.lower().split() unique_ratio = len(set(words)) / len(words) if words else 0 if unique_ratio < 0.4: risk_score += 0.3 flags.append("repetitive_vocabulary") # Extreme sentiment extreme_positive = ['perfect', 'amazing', 'incredible', 'flawless', 'outstanding'] extreme_negative = ['terrible', 'horrible', 'disgusting', 'awful', 'worst'] extreme_count = sum(1 for word in extreme_positive + extreme_negative if word in text.lower()) if extreme_count > 3: risk_score += 0.25 flags.append("extreme_sentiment") # Generic phrases check generic_phrases = ['highly recommend', 'five stars', 'buy it now', 'great product', 'very satisfied'] generic_count = sum(1 for phrase in generic_phrases if phrase in text.lower()) if generic_count > 2: risk_score += 0.2 flags.append("generic_language") # Language quality punct_ratio = len(re.findall(r'[!?]', text)) / len(text) if text else 0 if punct_ratio > 0.05: risk_score += 0.15 flags.append("excessive_punctuation") # Check uppercase ratio upper_ratio = sum(1 for c in text if c.isupper()) / len(text) if text else 0 if upper_ratio > 0.3: risk_score += 0.15 flags.append("excessive_caps") return { 'text': text[:100] + '...' if len(text) > 100 else text, 'risk_score': min(round(risk_score, 3), 1.0), 'status': 'suspicious' if risk_score > 0.6 else 'questionable' if risk_score > 0.3 else 'authentic', 'flags': flags, 'confidence': round(1 - risk_score, 3) } def _analyze_review_patterns(self, reviews: List[ReviewData], metadata: Dict) -> Dict: """Analyze overall review patterns""" pattern_flags = [] # Time pattern analysis if metadata and 'timestamps' in metadata: time_analysis = self._analyze_time_patterns(metadata['timestamps']) pattern_flags.extend(time_analysis) # Username patterns if metadata and 'usernames' in metadata: username_analysis = self._analyze_username_patterns(metadata['usernames']) pattern_flags.extend(username_analysis) # Text similarity similarity_analysis = self._analyze_text_similarity([r.text for r in reviews]) pattern_flags.extend(similarity_analysis) return { 'detected_patterns': pattern_flags, 'pattern_count': len(pattern_flags), 'severity': 'High' if len(pattern_flags) > 5 else 'Medium' if len(pattern_flags) > 2 else 'Low' } def _analyze_time_patterns(self, timestamps: List[str]) -> List[str]: """Analyze time patterns""" patterns = [] if len(timestamps) < 5: return patterns try: # Parse timestamps times = [] for ts in timestamps: try: dt = datetime.strptime(ts, "%Y-%m-%d %H:%M:%S") times.append(dt) except: continue if len(times) < 5: return patterns # Check time clustering times.sort() for i in range(len(times) - 4): if (times[i + 4] - times[i]).total_seconds() < 600: # 5 reviews within 10 minutes patterns.append("suspicious_time_clustering") break # Check work hours pattern work_hour_reviews = sum(1 for t in times if 9 <= t.hour <= 17) if work_hour_reviews / len(times) > 0.8: patterns.append("work_hours_concentration") except Exception as e: logger.error(f"Time pattern analysis error: {str(e)}") return patterns def _analyze_username_patterns(self, usernames: List[str]) -> List[str]: """Analyze username patterns""" patterns = [] # Check similar usernames similar_count = 0 for i, username1 in enumerate(usernames): for j, username2 in enumerate(usernames[i+1:], i+1): # Check auto-generated username patterns if re.match(r'user\d+', username1.lower()) and re.match(r'user\d+', username2.lower()): similar_count += 1 # Check prefix similarity elif len(username1) > 4 and len(username2) > 4 and username1[:4].lower() == username2[:4].lower(): similar_count += 1 if similar_count > len(usernames) * 0.3: patterns.append("suspicious_username_patterns") # Check default usernames default_patterns = ['user', 'guest', 'anonymous', 'temp'] default_count = sum(1 for username in usernames if any(pattern in username.lower() for pattern in default_patterns)) if default_count > len(usernames) * 0.4: patterns.append("excessive_default_usernames") return patterns def _analyze_text_similarity(self, texts: List[str]) -> List[str]: """Analyze text similarity""" patterns = [] if len(texts) < 3: return patterns # Simple text similarity check similar_pairs = 0 total_pairs = 0 for i, text1 in enumerate(texts): for j, text2 in enumerate(texts[i+1:], i+1): total_pairs += 1 # Calculate word overlap ratio words1 = set(text1.lower().split()) words2 = set(text2.lower().split()) if len(words1) > 0 and len(words2) > 0: overlap = len(words1 & words2) / len(words1 | words2) if overlap > 0.7: # 70% overlap similar_pairs += 1 # Check for completely repeated short phrases if len(text1) > 20 and text1.lower() in text2.lower(): similar_pairs += 1 if total_pairs > 0 and similar_pairs / total_pairs > 0.3: patterns.append("high_text_similarity") # Check template language template_phrases = ['i bought this', 'would recommend', 'great product', 'fast shipping'] template_counts = Counter() for text in texts: for phrase in template_phrases: if phrase in text.lower(): template_counts[phrase] += 1 if any(count > len(texts) * 0.6 for count in template_counts.values()): patterns.append("template_language") return patterns def _generate_fake_detection_recommendations(self, authenticity_rate: float, pattern_analysis: Dict) -> List[str]: """Generate fake detection recommendations""" recommendations = [] if authenticity_rate < 60: recommendations.append("đ¨ High Risk: Immediate review of all comments recommended, possible large-scale fake review activity") recommendations.append("đ Recommend enabling manual review process") elif authenticity_rate < 80: recommendations.append("â ī¸ Medium Risk: Some reviews are suspicious, focus on extreme rating reviews") else: recommendations.append("â Low Risk: Overall review authenticity is high") if pattern_analysis['pattern_count'] > 3: recommendations.append("đ Multiple suspicious patterns detected, recommend strengthening review posting restrictions") recommendations.append("đĄ Recommend regular review quality monitoring and establish long-term anti-fraud mechanisms") return recommendations def assess_review_quality_comprehensive(self, reviews: List[str], custom_weights: Dict = None) -> Tuple[Dict, Any]: """Comprehensive review quality assessment""" cache_key = self._get_cache_key(str(reviews) + str(custom_weights), "quality_comprehensive") cached_result = self._get_from_cache(cache_key) if cached_result and 'chart_data' not in cached_result: # Chart data not cached return cached_result, None processed_reviews = self.preprocess_reviews(reviews) if not processed_reviews: return {"error": "No valid reviews to analyze"}, None default_weights = { 'length_depth': 0.2, # Length and depth 'specificity': 0.2, # Specificity 'structure': 0.15, # Structure 'helpfulness': 0.15, # Helpfulness 'objectivity': 0.15, # Objectivity 'readability': 0.15 # Readability } weights = custom_weights if custom_weights else default_weights quality_assessments = [] for review_data in processed_reviews: assessment = self._comprehensive_quality_assessment(review_data.text, weights) quality_assessments.append(assessment) # Calculate statistics avg_scores = {} for factor in weights.keys(): scores = [assessment['factors'][factor] for assessment in quality_assessments] avg_scores[factor] = round(np.mean(scores), 3) overall_avg = round(np.mean([assessment['overall_score'] for assessment in quality_assessments]), 3) # Quality grade distribution grade_distribution = Counter([assessment['grade'] for assessment in quality_assessments]) grade_percentages = {grade: round(count/len(quality_assessments)*100, 1) for grade, count in grade_distribution.items()} result = { 'summary': { 'average_quality': overall_avg, 'total_reviews': len(quality_assessments), 'grade_distribution': grade_percentages, 'high_quality_count': sum(1 for assessment in quality_assessments if assessment['overall_score'] > 0.75), 'weights_used': weights }, 'factor_averages': avg_scores, 'detailed_assessments': quality_assessments[:20], # Limit display count 'insights': self._generate_quality_insights(overall_avg, grade_percentages, avg_scores) } # Create chart data chart_data = self._create_quality_chart_data(avg_scores, grade_percentages) if not cached_result: self._save_to_cache(cache_key, result, "quality_comprehensive") return result, chart_data def _comprehensive_quality_assessment(self, text: str, weights: Dict) -> Dict: """Comprehensive quality assessment for individual review""" factors = {} # Length and depth (0-1) word_count = len(text.split()) char_count = len(text) factors['length_depth'] = min(word_count / 100, 1.0) * 0.7 + min(char_count / 500, 1.0) * 0.3 # Specificity (0-1) - Check specific details specific_indicators = ['because', 'however', 'specifically', 'for example', 'such as', 'like', 'unlike'] numbers = len(re.findall(r'\b\d+\b', text)) specific_words = sum(1 for indicator in specific_indicators if indicator in text.lower()) factors['specificity'] = min((specific_words * 0.15 + numbers * 0.1), 1.0) # Structure (0-1) - Sentence structure and organization sentences = len(re.split(r'[.!?]+', text)) paragraphs = len(text.split('\n\n')) avg_sentence_length = word_count / sentences if sentences > 0 else 0 structure_score = min(sentences / 5, 1.0) * 0.6 + min(paragraphs / 3, 1.0) * 0.2 if 10 <= avg_sentence_length <= 20: # Ideal sentence length structure_score += 0.2 factors['structure'] = min(structure_score, 1.0) # Helpfulness (0-1) - Help for other buyers helpful_indicators = ['recommend', 'suggest', 'tip', 'advice', 'pros', 'cons', 'compare', 'alternative'] helpful_score = sum(1 for indicator in helpful_indicators if indicator in text.lower()) factors['helpfulness'] = min(helpful_score / 4, 1.0) # Objectivity (0-1) - Balanced viewpoint extreme_words = ['perfect', 'terrible', 'amazing', 'awful', 'incredible', 'horrible'] balanced_indicators = ['but', 'however', 'although', 'despite', 'while'] extreme_count = sum(1 for word in extreme_words if word in text.lower()) balanced_count = sum(1 for indicator in balanced_indicators if indicator in text.lower()) objectivity_score = 1.0 if extreme_count > 2: objectivity_score -= 0.3 if balanced_count > 0: objectivity_score += 0.2 factors['objectivity'] = max(min(objectivity_score, 1.0), 0.0) # Readability (0-1) - Grammar and spelling quality punctuation_ratio = len(re.findall(r'[,.!?;:]', text)) / len(text) if text else 0 capital_ratio = sum(1 for c in text if c.isupper()) / len(text) if text else 0 readability_score = 1.0 if punctuation_ratio > 0.1: # Too much punctuation readability_score -= 0.2 if capital_ratio > 0.2: # Too many capitals readability_score -= 0.3 if len(re.findall(r'\s+', text)) / len(text.split()) > 2: # Abnormal spacing readability_score -= 0.2 factors['readability'] = max(readability_score, 0.0) # Calculate weighted total score overall_score = sum(factors[factor] * weights[factor] for factor in factors.keys()) # Grading if overall_score >= 0.85: grade = 'A+' elif overall_score >= 0.75: grade = 'A' elif overall_score >= 0.65: grade = 'B' elif overall_score >= 0.55: grade = 'C' elif overall_score >= 0.45: grade = 'D' else: grade = 'F' return { 'text': text[:100] + '...' if len(text) > 100 else text, 'overall_score': round(overall_score, 3), 'grade': grade, 'factors': {k: round(v, 3) for k, v in factors.items()} } def _create_quality_chart_data(self, factor_averages: Dict, grade_distribution: Dict) -> Dict: """Create quality analysis chart data""" return { 'factor_averages': factor_averages, 'grade_distribution': grade_distribution } def _generate_quality_insights(self, overall_avg: float, grade_distribution: Dict, factor_averages: Dict) -> List[str]: """Generate quality analysis insights""" insights = [] # Overall quality assessment if overall_avg >= 0.75: insights.append("đ Excellent overall review quality, providing valuable information for potential customers") elif overall_avg >= 0.6: insights.append("â Good review quality, but room for improvement remains") else: insights.append("â ī¸ Review quality needs improvement, recommend encouraging more detailed feedback") # Grade distribution analysis high_quality_pct = grade_distribution.get('A+', 0) + grade_distribution.get('A', 0) if high_quality_pct > 50: insights.append(f"đ {high_quality_pct}% of reviews meet high quality standards") # Factor analysis best_factor = max(factor_averages.items(), key=lambda x: x[1]) worst_factor = min(factor_averages.items(), key=lambda x: x[1]) insights.append(f"đĒ Strongest review aspect: {best_factor[0]} (score: {best_factor[1]})") insights.append(f"đ¯ Needs improvement: {worst_factor[0]} (score: {worst_factor[1]})") return insights def predict_recommendation_intent(self, reviews: List[str]) -> Dict: """Predict recommendation intent""" cache_key = self._get_cache_key(str(reviews), "recommendation_intent") cached_result = self._get_from_cache(cache_key) if cached_result: return cached_result processed_reviews = self.preprocess_reviews(reviews) if not processed_reviews: return {"error": "No valid reviews to analyze"} recommendation_indicators = { 'strong_positive': ['highly recommend', 'definitely buy', 'must have', 'love it', 'perfect'], 'positive': ['recommend', 'good choice', 'satisfied', 'happy with', 'worth it'], 'negative': ['not recommend', 'disappointed', 'regret', 'waste of money', 'avoid'], 'strong_negative': ['never buy again', 'terrible', 'worst purchase', 'completely disappointed'] } results = [] intent_counts = defaultdict(int) for review_data in processed_reviews: text_lower = review_data.text.lower() intent_score = 0 matched_indicators = [] # Check recommendation intent indicators for intent_type, indicators in recommendation_indicators.items(): for indicator in indicators: if indicator in text_lower: if intent_type == 'strong_positive': intent_score += 2 elif intent_type == 'positive': intent_score += 1 elif intent_type == 'negative': intent_score -= 1 elif intent_type == 'strong_negative': intent_score -= 2 matched_indicators.append(indicator) # Determine recommendation intent level if intent_score >= 2: intent = 'strongly_recommend' elif intent_score >= 1: intent = 'recommend' elif intent_score <= -2: intent = 'strongly_not_recommend' elif intent_score <= -1: intent = 'not_recommend' else: intent = 'neutral' intent_counts[intent] += 1 results.append({ 'text': review_data.text[:100] + '...' if len(review_data.text) > 100 else review_data.text, 'recommendation_intent': intent, 'confidence_score': min(abs(intent_score) / 2, 1.0), 'matched_indicators': matched_indicators }) # Calculate recommendation rate total = len(results) recommend_count = intent_counts['recommend'] + intent_counts['strongly_recommend'] not_recommend_count = intent_counts['not_recommend'] + intent_counts['strongly_not_recommend'] recommendation_rate = round(recommend_count / total * 100, 1) if total > 0 else 0 result = { 'summary': { 'recommendation_rate': recommendation_rate, 'total_reviews': total, 'distribution': {k: round(v/total*100, 1) for k, v in intent_counts.items()} }, 'detailed_results': results, 'insights': self._generate_recommendation_insights(recommendation_rate, intent_counts) } self._save_to_cache(cache_key, result, "recommendation_intent") return result def _generate_recommendation_insights(self, recommendation_rate: float, intent_counts: Dict) -> List[str]: """Generate recommendation intent insights""" insights = [] if recommendation_rate > 80: insights.append("đ Product receives extremely high recommendation rate with excellent customer satisfaction") elif recommendation_rate > 60: insights.append("đ Good product recommendation rate, customers are generally satisfied") elif recommendation_rate < 30: insights.append("â ī¸ Low product recommendation rate, need to focus on product quality or service issues") # Analyze intent strength strong_positive = intent_counts.get('strongly_recommend', 0) strong_negative = intent_counts.get('strongly_not_recommend', 0) if strong_positive > strong_negative * 2: insights.append("đĒ Strong positive recommendations dominate, product has strong customer loyalty") elif strong_negative > strong_positive: insights.append("đ¨ Significant strong negative recommendations exist, need immediate attention to core issues") return insights def analyze_review_trends(self, reviews: List[str], timestamps: List[str] = None) -> Dict: """Analyze review trends""" if not timestamps: return {"error": "Timestamp data required for trend analysis"} cache_key = self._get_cache_key(str(reviews) + str(timestamps), "trends") cached_result = self._get_from_cache(cache_key) if cached_result: return cached_result # Parse timestamps and sort by time review_time_pairs = [] for review, timestamp in zip(reviews, timestamps): try: dt = datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S") review_time_pairs.append((review, dt)) except: continue review_time_pairs.sort(key=lambda x: x[1]) if len(review_time_pairs) < 10: return {"error": "Need at least 10 valid timestamped reviews for trend analysis"} # Group by month for analysis monthly_data = defaultdict(list) for review, dt in review_time_pairs: month_key = dt.strftime("%Y-%m") monthly_data[month_key].append(review) # Calculate monthly trends monthly_trends = {} for month, month_reviews in monthly_data.items(): sentiment_analysis = self.analyze_sentiment_advanced(month_reviews) if 'error' not in sentiment_analysis: monthly_trends[month] = { 'review_count': len(month_reviews), 'positive_rate': sentiment_analysis['summary'].get('positive', 0), 'negative_rate': sentiment_analysis['summary'].get('negative', 0), 'average_confidence': sentiment_analysis.get('average_confidence', 0) } # Trend analysis months = sorted(monthly_trends.keys()) if len(months) >= 3: trend_analysis = self._analyze_sentiment_trend(months, monthly_trends) else: trend_analysis = {"error": "Need at least 3 months of data for trend analysis"} result = { 'monthly_trends': monthly_trends, 'trend_analysis': trend_analysis, 'time_range': { 'start': review_time_pairs[0][1].strftime("%Y-%m-%d"), 'end': review_time_pairs[-1][1].strftime("%Y-%m-%d"), 'total_months': len(months) }, 'insights': self._generate_trend_insights(monthly_trends, trend_analysis) } self._save_to_cache(cache_key, result, "trends") return result def _analyze_sentiment_trend(self, months: List[str], monthly_data: Dict) -> Dict: """Analyze sentiment trends""" positive_rates = [monthly_data[month]['positive_rate'] for month in months] if len(positive_rates) < 3: return {"error": "Insufficient data"} # Simple trend calculation recent_avg = np.mean(positive_rates[-3:]) # Average of last 3 months earlier_avg = np.mean(positive_rates[:-3]) if len(positive_rates) > 3 else positive_rates[0] trend_direction = 'improving' if recent_avg > earlier_avg + 5 else 'declining' if recent_avg < earlier_avg - 5 else 'stable' trend_strength = abs(recent_avg - earlier_avg) return { 'direction': trend_direction, 'strength': round(trend_strength, 1), 'recent_average': round(recent_avg, 1), 'earlier_average': round(earlier_avg, 1) } def _generate_trend_insights(self, monthly_trends: Dict, trend_analysis: Dict) -> List[str]: """Generate trend insights""" insights = [] if 'error' in trend_analysis: insights.append("đ Insufficient data for trend analysis, recommend collecting more historical data") return insights direction = trend_analysis.get('direction', 'unknown') strength = trend_analysis.get('strength', 0) if direction == 'improving': insights.append(f"đ Sentiment trend improving, recent satisfaction increased by {strength:.1f} percentage points") elif direction == 'declining': insights.append(f"đ Sentiment trend declining, recent satisfaction decreased by {strength:.1f} percentage points") else: insights.append("âĄī¸ Sentiment trend relatively stable, no significant changes observed") # Analyze review volume trends review_counts = [data['review_count'] for data in monthly_trends.values()] if len(review_counts) >= 3: recent_volume = np.mean(review_counts[-2:]) earlier_volume = np.mean(review_counts[:-2]) if recent_volume > earlier_volume * 1.5: insights.append("đĨ Review volume significantly increased, product attention rising") elif recent_volume < earlier_volume * 0.5: insights.append("đ Review volume decreased, need to monitor product popularity") return insights # Global analyzer instance analyzer = None def get_analyzer(): """Get analyzer instance (lazy initialization)""" global analyzer if analyzer is None: analyzer = AdvancedReviewAnalyzer() return analyzer def process_file_upload(file) -> Tuple[List[str], Dict]: """Process file upload""" if file is None: return [], {} try: if file.name.endswith('.csv'): df = pd.read_csv(file.name) elif file.name.endswith(('.xlsx', '.xls')): df = pd.read_excel(file.name) else: return [], {"error": "Unsupported file format, please upload CSV or Excel files"} # Auto-detect column names review_col = None time_col = None user_col = None rating_col = None for col in df.columns: col_lower = col.lower().strip() if any(keyword in col_lower for keyword in ['review', 'comment', 'text', 'content']): review_col = col elif any(keyword in col_lower for keyword in ['time', 'date', 'created', 'timestamp']): time_col = col elif any(keyword in col_lower for keyword in ['user', 'name', 'author', 'customer']): user_col = col elif any(keyword in col_lower for keyword in ['rating', 'score', 'star', 'stars']): rating_col = col if review_col is None: return [], {"error": "Review content column not found, please ensure file contains review text"} # Extract data reviews = df[review_col].dropna().astype(str).tolist() metadata = {} if time_col and time_col in df.columns: metadata['timestamps'] = df[time_col].dropna().astype(str).tolist() if user_col and user_col in df.columns: metadata['usernames'] = df[user_col].dropna().astype(str).tolist() if rating_col and rating_col in df.columns: metadata['ratings'] = df[rating_col].dropna().tolist() metadata['total_rows'] = len(df) metadata['valid_reviews'] = len(reviews) return reviews, metadata except Exception as e: logger.error(f"File processing error: {str(e)}") return [], {"error": f"File processing failed: {str(e)}"} # Gradio interface functions def sentiment_analysis_interface(reviews_text: str, file_upload, language: str): """Sentiment analysis interface""" try: analyzer = get_analyzer() reviews = [] if file_upload is not None: reviews, metadata = process_file_upload(file_upload) if 'error' in metadata: return metadata['error'], None, None else: reviews = [line.strip() for line in reviews_text.split('\n') if line.strip() and len(line.strip()) > 10] if not reviews: return "Please enter review text or upload a file", None, None if len(reviews) > 1000: reviews = reviews[:1000] # Limit processing count result = analyzer.analyze_sentiment_advanced(reviews, language) if 'error' in result: return result['error'], None, None # Create charts lazy_import() fig1 = plotly.go.Figure(data=[ plotly.go.Pie( labels=list(result['summary'].keys()), values=list(result['summary'].values()), hole=0.3 ) ]) fig1.update_layout(title="Sentiment Distribution") # Confidence distribution confidences = [item['confidence'] for item in result['details']] fig2 = plotly.go.Figure(data=[ plotly.go.Histogram(x=confidences, nbinsx=20) ]) fig2.update_layout(title="Confidence Distribution", xaxis_title="Confidence", yaxis_title="Frequency") return json.dumps(result, indent=2, ensure_ascii=False), fig1, fig2 except Exception as e: logger.error(f"Sentiment analysis error: {str(e)}") return f"Analysis error: {str(e)}", None, None def emotion_analysis_interface(reviews_text: str, file_upload): """Emotion analysis interface""" try: analyzer = get_analyzer() reviews = [] if file_upload is not None: reviews, metadata = process_file_upload(file_upload) if 'error' in metadata: return metadata['error'], None else: reviews = [line.strip() for line in reviews_text.split('\n') if line.strip() and len(line.strip()) > 10] if not reviews: return "Please enter review text or upload a file", None if len(reviews) > 500: reviews = reviews[:500] result = analyzer.analyze_emotions(reviews) if 'error' in result: return result['error'], None # Create emotion distribution chart lazy_import() fig = plotly.go.Figure(data=[ plotly.go.Bar( x=list(result['summary'].keys()), y=list(result['summary'].values()), text=[analyzer.emotion_emojis.get(emotion, 'đ') for emotion in result['summary'].keys()], textposition='auto' ) ]) fig.update_layout(title="Emotion Distribution", xaxis_title="Emotion Type", yaxis_title="Percentage") return json.dumps(result, indent=2, ensure_ascii=False), fig except Exception as e: logger.error(f"Emotion analysis error: {str(e)}") return f"Analysis error: {str(e)}", None def aspect_analysis_interface(reviews_text: str, file_upload): """Aspect analysis interface""" try: analyzer = get_analyzer() reviews = [] if file_upload is not None: reviews, metadata = process_file_upload(file_upload) if 'error' in metadata: return metadata['error'], None else: reviews = [line.strip() for line in reviews_text.split('\n') if line.strip() and len(line.strip()) > 10] if not reviews: return "Please enter review text or upload a file", None if len(reviews) > 800: reviews = reviews[:800] result = analyzer.analyze_aspects_advanced(reviews) if 'error' in result: return result['error'], None # Create aspect sentiment chart lazy_import() if result['aspect_scores']: aspects = list(result['aspect_scores'].keys()) scores = [result['aspect_scores'][aspect]['sentiment_score'] for aspect in aspects] fig = plotly.go.Figure(data=[ plotly.go.Bar( x=aspects, y=scores, marker_color=['green' if score > 0 else 'red' for score in scores] ) ]) fig.update_layout( title="Product Aspect Sentiment Scores", xaxis_title="Product Aspects", yaxis_title="Sentiment Score (-1 to 1)", xaxis_tickangle=-45 ) else: fig = None return json.dumps(result, indent=2, ensure_ascii=False), fig except Exception as e: logger.error(f"Aspect analysis error: {str(e)}") return f"Analysis error: {str(e)}", None def fake_detection_interface(reviews_text: str, file_upload): """Fake detection interface""" try: analyzer = get_analyzer() reviews = [] metadata = {} if file_upload is not None: reviews, metadata = process_file_upload(file_upload) if 'error' in metadata: return metadata['error'], None else: reviews = [line.strip() for line in reviews_text.split('\n') if line.strip() and len(line.strip()) > 10] if not reviews: return "Please enter review text or upload a file", None if len(reviews) > 1000: reviews = reviews[:1000] result = analyzer.detect_fake_reviews_advanced(reviews, metadata if metadata else None) if 'error' in result: return result['error'], None # Create risk distribution chart lazy_import() risk_scores = [item['risk_score'] for item in result['individual_analysis']] fig = plotly.go.Figure(data=[ plotly.go.Histogram( x=risk_scores, nbinsx=20, marker_color='red', opacity=0.7 ) ]) fig.update_layout( title="Fake Risk Distribution", xaxis_title="Risk Score", yaxis_title="Number of Reviews" ) return json.dumps(result, indent=2, ensure_ascii=False), fig except Exception as e: logger.error(f"Fake detection error: {str(e)}") return f"Analysis error: {str(e)}", None def quality_assessment_interface(reviews_text: str, file_upload, length_weight, detail_weight, structure_weight, help_weight, objectivity_weight, readability_weight): """Quality assessment interface""" try: analyzer = get_analyzer() reviews = [] if file_upload is not None: reviews, metadata = process_file_upload(file_upload) if 'error' in metadata: return metadata['error'], None, None else: reviews = [line.strip() for line in reviews_text.split('\n') if line.strip() and len(line.strip()) > 10] if not reviews: return "Please enter review text or upload a file", None, None if len(reviews) > 800: reviews = reviews[:800] # Normalize weights total_weight = length_weight + detail_weight + structure_weight + help_weight + objectivity_weight + readability_weight if total_weight == 0: total_weight = 1 custom_weights = { 'length_depth': length_weight / total_weight, 'specificity': detail_weight / total_weight, 'structure': structure_weight / total_weight, 'helpfulness': help_weight / total_weight, 'objectivity': objectivity_weight / total_weight, 'readability': readability_weight / total_weight } result, chart_data = analyzer.assess_review_quality_comprehensive(reviews, custom_weights) if 'error' in result: return result['error'], None, None # Create radar chart and grade distribution chart lazy_import() # Radar chart factors = list(result['factor_averages'].keys()) values = list(result['factor_averages'].values()) fig1 = plotly.go.Figure() fig1.add_trace(plotly.go.Scatterpolar( r=values, theta=factors, fill='toself', name='Quality Factors' )) fig1.update_layout( polar=dict(radialaxis=dict(visible=True, range=[0, 1])), showlegend=True, title="Quality Factors Radar Chart" ) # Grade distribution chart if result['summary']['grade_distribution']: grades = list(result['summary']['grade_distribution'].keys()) grade_counts = list(result['summary']['grade_distribution'].values()) fig2 = plotly.go.Figure(data=[ plotly.go.Bar(x=grades, y=grade_counts, marker_color='skyblue') ]) fig2.update_layout(title="Quality Grade Distribution", xaxis_title="Grade", yaxis_title="Percentage") else: fig2 = None return json.dumps(result, indent=2, ensure_ascii=False), fig1, fig2 except Exception as e: logger.error(f"Quality assessment error: {str(e)}") return f"Analysis error: {str(e)}", None, None def recommendation_intent_interface(reviews_text: str, file_upload): """Recommendation intent analysis interface""" try: analyzer = get_analyzer() reviews = [] if file_upload is not None: reviews, metadata = process_file_upload(file_upload) if 'error' in metadata: return metadata['error'], None else: reviews = [line.strip() for line in reviews_text.split('\n') if line.strip() and len(line.strip()) > 10] if not reviews: return "Please enter review text or upload a file", None if len(reviews) > 800: reviews = reviews[:800] result = analyzer.predict_recommendation_intent(reviews) if 'error' in result: return result['error'], None # Create recommendation intent distribution chart lazy_import() distribution = result['summary']['distribution'] fig = plotly.go.Figure(data=[ plotly.go.Pie( labels=list(distribution.keys()), values=list(distribution.values()), hole=0.3 ) ]) fig.update_layout(title=f"Recommendation Intent Distribution (Recommendation Rate: {result['summary']['recommendation_rate']}%)") return json.dumps(result, indent=2, ensure_ascii=False), fig except Exception as e: logger.error(f"Recommendation intent error: {str(e)}") return f"Analysis error: {str(e)}", None def trend_analysis_interface(reviews_text: str, file_upload): """Trend analysis interface""" try: analyzer = get_analyzer() reviews = [] timestamps = [] if file_upload is not None: reviews, metadata = process_file_upload(file_upload) if 'error' in metadata: return metadata['error'], None timestamps = metadata.get('timestamps', []) else: return "Trend analysis requires uploading a file with timestamps", None if not reviews or not timestamps: return "Need both review text and timestamp data", None result = analyzer.analyze_review_trends(reviews, timestamps) if 'error' in result: return result['error'], None # Create trend chart lazy_import() monthly_data = result['monthly_trends'] if monthly_data: months = sorted(monthly_data.keys()) positive_rates = [monthly_data[month]['positive_rate'] for month in months] review_counts = [monthly_data[month]['review_count'] for month in months] fig = plotly.make_subplots( rows=2, cols=1, subplot_titles=('Sentiment Trend', 'Review Volume Trend'), specs=[[{"secondary_y": False}], [{"secondary_y": False}]] ) # Sentiment trend fig.add_trace( plotly.go.Scatter(x=months, y=positive_rates, mode='lines+markers', name='Positive Sentiment Rate'), row=1, col=1 ) # Review volume trend fig.add_trace( plotly.go.Bar(x=months, y=review_counts, name='Review Count'), row=2, col=1 ) fig.update_layout(title="Review Trend Analysis", height=600) else: fig = None return json.dumps(result, indent=2, ensure_ascii=False), fig except Exception as e: logger.error(f"Trend analysis error: {str(e)}") return f"Analysis error: {str(e)}", None def competitive_analysis_interface(product_a_text: str, product_b_text: str, file_a, file_b): """Competitive analysis interface""" try: analyzer = get_analyzer() # Process Product A data if file_a is not None: reviews_a, metadata_a = process_file_upload(file_a) if 'error' in metadata_a: return metadata_a['error'], None else: reviews_a = [line.strip() for line in product_a_text.split('\n') if line.strip() and len(line.strip()) > 10] # Process Product B data if file_b is not None: reviews_b, metadata_b = process_file_upload(file_b) if 'error' in metadata_b: return metadata_b['error'], None else: reviews_b = [line.strip() for line in product_b_text.split('\n') if line.strip() and len(line.strip()) > 10] if not reviews_a or not reviews_b: return "Both products need review data", None # Limit data volume if len(reviews_a) > 500: reviews_a = reviews_a[:500] if len(reviews_b) > 500: reviews_b = reviews_b[:500] # Analyze both products result_a = analyzer.analyze_sentiment_advanced(reviews_a) result_b = analyzer.analyze_sentiment_advanced(reviews_b) if 'error' in result_a or 'error' in result_b: return "Analysis error, please check data", None # Comparison analysis comparison = { 'product_a': { 'summary': result_a['summary'], 'total_reviews': result_a['total_reviews'], 'average_confidence': result_a['average_confidence'] }, 'product_b': { 'summary': result_b['summary'], 'total_reviews': result_b['total_reviews'], 'average_confidence': result_b['average_confidence'] }, 'winner': { 'by_positive_rate': 'Product A' if result_a['summary']['positive'] > result_b['summary']['positive'] else 'Product B', 'by_confidence': 'Product A' if result_a['average_confidence'] > result_b['average_confidence'] else 'Product B' }, 'insights': [ f"Product A positive sentiment rate: {result_a['summary']['positive']}%", f"Product B positive sentiment rate: {result_b['summary']['positive']}%", f"Sentiment analysis confidence: A({result_a['average_confidence']:.2f}) vs B({result_b['average_confidence']:.2f})" ] } # Create comparison chart lazy_import() fig = plotly.make_subplots( rows=1, cols=2, specs=[[{'type': 'pie'}, {'type': 'pie'}]], subplot_titles=['Product A', 'Product B'] ) fig.add_trace(plotly.go.Pie( labels=list(result_a['summary'].keys()), values=list(result_a['summary'].values()), name="Product A" ), row=1, col=1) fig.add_trace(plotly.go.Pie( labels=list(result_b['summary'].keys()), values=list(result_b['summary'].values()), name="Product B" ), row=1, col=2) fig.update_layout(title="Competitive Sentiment Analysis") return json.dumps(comparison, indent=2, ensure_ascii=False), fig except Exception as e: logger.error(f"Competitive analysis error: {str(e)}") return f"Analysis error: {str(e)}", None def generate_professional_report(analysis_result: str, report_type: str, company_name: str, product_name: str): """Generate professional report""" try: if not analysis_result.strip(): return "No analysis data available, please run analysis first" data = json.loads(analysis_result) timestamp = datetime.now().strftime("%B %d, %Y at %H:%M") if report_type == "sentiment": report = f"""# đ Sentiment Analysis Professional Report **Report Generated**: {timestamp} **Company Name**: {company_name or 'Not Specified'} **Product Name**: {product_name or 'Not Specified'} ## đ Executive Summary This report provides a comprehensive sentiment analysis based on {data.get('total_reviews', 0)} customer reviews. Analysis results show: - **Positive Sentiment**: {data.get('summary', {}).get('positive', 0)}% - **Negative Sentiment**: {data.get('summary', {}).get('negative', 0)}% - **Neutral Sentiment**: {data.get('summary', {}).get('neutral', 0)}% - **Average Confidence**: {data.get('average_confidence', 0):.2f} ## đ¯ Key Findings {chr(10).join(['âĸ ' + insight for insight in data.get('insights', [])])} ## đ Detailed Analysis ### Sentiment Distribution Analysis Based on AI model analysis, customer sentiment breakdown: - Positive feedback accounts for {data.get('summary', {}).get('positive', 0)}%, indicating overall product/service performance - Negative feedback accounts for {data.get('summary', {}).get('negative', 0)}%, requiring focused improvement attention - Neutral reviews account for {data.get('summary', {}).get('neutral', 0)}% ### Confidence Analysis Model prediction average confidence is {data.get('average_confidence', 0):.2f}, {'indicating high confidence with reliable analysis results' if data.get('average_confidence', 0) > 0.7 else 'indicating medium confidence, recommend combining with manual review'}. ## đĄ Recommendations & Action Plan 1. **Short-term Actions** (1-3 months) - Develop improvement plans for major negative feedback - Strengthen customer service training - Establish customer feedback tracking mechanisms 2. **Medium-term Strategy** (3-6 months) - Product/service optimization - Competitive benchmarking analysis - Customer satisfaction improvement plans 3. **Long-term Planning** (6-12 months) - Brand image enhancement - Customer loyalty programs - Continuous monitoring and improvement systems ## đ Methodology This analysis employs advanced natural language processing technologies, including: - RoBERTa pre-trained models for sentiment classification - Multi-dimensional text feature extraction - Confidence assessment mechanisms - Lexicon-enhanced analysis --- *This report was automatically generated by SmartReview Pro. Recommend combining with business expert opinions for decision-making.* """ elif report_type == "fake_detection": authenticity_rate = data.get('summary', {}).get('authenticity_rate', 0) report = f"""# đ Fake Review Detection Professional Report **Report Generated**: {timestamp} **Company Name**: {company_name or 'Not Specified'} **Product Name**: {product_name or 'Not Specified'} ## đ Detection Summary This report analyzed {data.get('summary', {}).get('total_reviews', 0)} reviews for fake detection: - **Authenticity Rate**: {data.get('summary', {}).get('authenticity_rate', 0)}% - **Suspicious Reviews**: {data.get('summary', {}).get('suspicious_reviews', 0)} - **Risk Level**: {data.get('summary', {}).get('risk_level', 'Unknown')} ## â ī¸ Risk Assessment {'đ¨ **High Risk Warning**: Large number of suspicious reviews detected, immediate action recommended' if authenticity_rate < 60 else 'â ī¸ **Medium Risk Alert**: Some suspicious reviews exist, attention needed' if authenticity_rate < 80 else 'â **Low Risk**: Review authenticity is high, generally trustworthy'} ## đ Detection Details ### Common Fake Indicators {chr(10).join(['âĸ ' + rec for rec in data.get('recommendations', [])])} ### Pattern Analysis Results {f"Detected {data.get('pattern_analysis', {}).get('pattern_count', 0)} suspicious patterns" if 'pattern_analysis' in data else 'No pattern analysis performed'} ## đĄ Improvement Recommendations 1. **Immediate Actions** - Review high-risk flagged reviews - Strengthen review posting verification mechanisms - Establish blacklist systems 2. **System Optimization** - Implement real-time monitoring systems - Raise review standards for new users - Build review quality scoring mechanisms 3. **Long-term Protection** - Conduct regular fake review detection - Train customer service teams on identification capabilities - Establish user reputation systems --- *Detection based on multi-dimensional text analysis and behavioral pattern recognition technologies* """ elif report_type == "quality": avg_quality = data.get('summary', {}).get('average_quality', 0) report = f"""# â Review Quality Assessment Professional Report **Report Generated**: {timestamp} **Company Name**: {company_name or 'Not Specified'} **Product Name**: {product_name or 'Not Specified'} ## đ Quality Overview This report assessed the quality of {data.get('summary', {}).get('total_reviews', 0)} customer reviews: - **Average Quality Score**: {avg_quality:.2f}/1.0 - **Quality Rating**: {'Excellent' if avg_quality > 0.8 else 'Good' if avg_quality > 0.6 else 'Average' if avg_quality > 0.4 else 'Poor'} - **High Quality Reviews**: {data.get('summary', {}).get('high_quality_count', 0)} ## đ¯ Quality Dimension Analysis ### Dimension Scores {chr(10).join([f'âĸ {k}: {v:.2f}' for k, v in data.get('factor_averages', {}).items()])} ### Grade Distribution {chr(10).join([f'âĸ Grade {grade}: {pct}%' for grade, pct in data.get('summary', {}).get('grade_distribution', {}).items()])} ## đ Key Insights {chr(10).join(['âĸ ' + insight for insight in data.get('insights', [])])} ## đ Quality Improvement Recommendations 1. **Encourage Detailed Feedback** - Design guided questions - Provide review reward mechanisms - Showcase quality review examples 2. **Optimize User Experience** - Simplify review posting process - Provide review template guidance - Respond and interact promptly 3. **Continuous Quality Monitoring** - Regular review quality assessment - Analyze quality trend changes - Adjust review strategies --- *Assessment based on multi-dimensional quality evaluation model, weights adjustable according to business needs* """ else: report = f"""# đ Comprehensive Analysis Report **Report Generated**: {timestamp} **Company Name**: {company_name or 'Not Specified'} **Product Name**: {product_name or 'Not Specified'} ## Analysis Results {json.dumps(data, indent=2, ensure_ascii=False)} --- *Report generated by SmartReview Pro* """ return report except Exception as e: logger.error(f"Report generation error: {str(e)}") return f"Report generation failed: {str(e)}" # Create Gradio interface def create_gradio_interface(): """Create Gradio interface""" theme = gr.themes.Soft( primary_hue="blue", secondary_hue="sky", neutral_hue="slate", ) with gr.Blocks(title="SmartReview Pro - Comprehensive Review Analysis Platform", theme=theme) as demo: gr.HTML("""
Integrated sentiment analysis, fake detection, quality assessment, trend analysis and more
đ SmartReview Pro - AI-Powered Review Analysis Platform
đĄ Transform Customer Feedback into Business Intelligence
đŦ Powered by Advanced Natural Language Processing