entropy25 commited on
Commit
c6d71e7
·
verified ·
1 Parent(s): 4cb352f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -10
app.py CHANGED
@@ -3,22 +3,23 @@ import torch
3
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
4
  from peft import PeftModel
5
 
6
- # Base model(基础模型)
7
  base_model_name = "facebook/nllb-200-distilled-600M"
8
-
9
- # ② LoRA adapter(你的模型)
10
  adapter_model_name = "entropy25/mt_en_no_oil"
11
 
12
- # Load tokenizer and base model
13
  tokenizer = AutoTokenizer.from_pretrained(base_model_name)
14
- base_model = AutoModelForSeq2SeqLM.from_pretrained(base_model_name)
 
 
 
 
 
15
 
16
  # Apply the LoRA adapter
17
  model = PeftModel.from_pretrained(base_model, adapter_model_name)
18
 
19
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
- model.to(device)
21
-
22
  def translate(text, source_lang, target_lang):
23
  if not text.strip():
24
  return "Please enter text to translate."
@@ -33,7 +34,11 @@ def translate(text, source_lang, target_lang):
33
  return_tensors="pt",
34
  truncation=True,
35
  max_length=512
36
- ).to(device)
 
 
 
 
37
 
38
  outputs = model.generate(
39
  **inputs,
@@ -56,4 +61,4 @@ gr.Interface(
56
  outputs=gr.Textbox(label="Translation", lines=6),
57
  title="LoRA-Enhanced English↔Norwegian Translator",
58
  description="Fine-tuned NLLB-200 model with LoRA adapter: entropy25/mt_en_no_oil"
59
- ).launch(share=True)
 
3
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
4
  from peft import PeftModel
5
 
6
+ # Base model
7
  base_model_name = "facebook/nllb-200-distilled-600M"
8
+ # LoRA adapter
 
9
  adapter_model_name = "entropy25/mt_en_no_oil"
10
 
11
+ # Load with optimizations to reduce storage
12
  tokenizer = AutoTokenizer.from_pretrained(base_model_name)
13
+ base_model = AutoModelForSeq2SeqLM.from_pretrained(
14
+ base_model_name,
15
+ torch_dtype=torch.float16, # Use half precision
16
+ low_cpu_mem_usage=True,
17
+ device_map="auto"
18
+ )
19
 
20
  # Apply the LoRA adapter
21
  model = PeftModel.from_pretrained(base_model, adapter_model_name)
22
 
 
 
 
23
  def translate(text, source_lang, target_lang):
24
  if not text.strip():
25
  return "Please enter text to translate."
 
34
  return_tensors="pt",
35
  truncation=True,
36
  max_length=512
37
+ )
38
+
39
+ # Move inputs to the same device as model
40
+ if hasattr(model, 'device'):
41
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
42
 
43
  outputs = model.generate(
44
  **inputs,
 
61
  outputs=gr.Textbox(label="Translation", lines=6),
62
  title="LoRA-Enhanced English↔Norwegian Translator",
63
  description="Fine-tuned NLLB-200 model with LoRA adapter: entropy25/mt_en_no_oil"
64
+ ).launch()