Update app.py
Browse files
app.py
CHANGED
|
@@ -3,22 +3,23 @@ import torch
|
|
| 3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 4 |
from peft import PeftModel
|
| 5 |
|
| 6 |
-
#
|
| 7 |
base_model_name = "facebook/nllb-200-distilled-600M"
|
| 8 |
-
|
| 9 |
-
# ② LoRA adapter(你的模型)
|
| 10 |
adapter_model_name = "entropy25/mt_en_no_oil"
|
| 11 |
|
| 12 |
-
# Load
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 14 |
-
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Apply the LoRA adapter
|
| 17 |
model = PeftModel.from_pretrained(base_model, adapter_model_name)
|
| 18 |
|
| 19 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
-
model.to(device)
|
| 21 |
-
|
| 22 |
def translate(text, source_lang, target_lang):
|
| 23 |
if not text.strip():
|
| 24 |
return "Please enter text to translate."
|
|
@@ -33,7 +34,11 @@ def translate(text, source_lang, target_lang):
|
|
| 33 |
return_tensors="pt",
|
| 34 |
truncation=True,
|
| 35 |
max_length=512
|
| 36 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
outputs = model.generate(
|
| 39 |
**inputs,
|
|
@@ -56,4 +61,4 @@ gr.Interface(
|
|
| 56 |
outputs=gr.Textbox(label="Translation", lines=6),
|
| 57 |
title="LoRA-Enhanced English↔Norwegian Translator",
|
| 58 |
description="Fine-tuned NLLB-200 model with LoRA adapter: entropy25/mt_en_no_oil"
|
| 59 |
-
).launch(
|
|
|
|
| 3 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 4 |
from peft import PeftModel
|
| 5 |
|
| 6 |
+
# Base model
|
| 7 |
base_model_name = "facebook/nllb-200-distilled-600M"
|
| 8 |
+
# LoRA adapter
|
|
|
|
| 9 |
adapter_model_name = "entropy25/mt_en_no_oil"
|
| 10 |
|
| 11 |
+
# Load with optimizations to reduce storage
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 13 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 14 |
+
base_model_name,
|
| 15 |
+
torch_dtype=torch.float16, # Use half precision
|
| 16 |
+
low_cpu_mem_usage=True,
|
| 17 |
+
device_map="auto"
|
| 18 |
+
)
|
| 19 |
|
| 20 |
# Apply the LoRA adapter
|
| 21 |
model = PeftModel.from_pretrained(base_model, adapter_model_name)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
def translate(text, source_lang, target_lang):
|
| 24 |
if not text.strip():
|
| 25 |
return "Please enter text to translate."
|
|
|
|
| 34 |
return_tensors="pt",
|
| 35 |
truncation=True,
|
| 36 |
max_length=512
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Move inputs to the same device as model
|
| 40 |
+
if hasattr(model, 'device'):
|
| 41 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 42 |
|
| 43 |
outputs = model.generate(
|
| 44 |
**inputs,
|
|
|
|
| 61 |
outputs=gr.Textbox(label="Translation", lines=6),
|
| 62 |
title="LoRA-Enhanced English↔Norwegian Translator",
|
| 63 |
description="Fine-tuned NLLB-200 model with LoRA adapter: entropy25/mt_en_no_oil"
|
| 64 |
+
).launch()
|