|
|
import gradio as gr |
|
|
from PIL import Image |
|
|
from transformers import TrOCRProcessor, VisionEncoderDecoderModel |
|
|
|
|
|
|
|
|
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") |
|
|
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") |
|
|
|
|
|
def ocr_on_cropped(image: Image.Image): |
|
|
if image is None: |
|
|
return "กรุณาอัปโหลดและครอบภาพก่อน" |
|
|
|
|
|
|
|
|
pixel_values = processor(images=image, return_tensors="pt").pixel_values |
|
|
generated_ids = model.generate(pixel_values) |
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
return generated_text.strip() |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("## 🤗 OCR ด้วย HuggingFace - อัปโหลดและครอบภาพ") |
|
|
|
|
|
with gr.Row(): |
|
|
image_input = gr.Image(type="pil", interactive=True, label="อัปโหลดและครอบภาพ") |
|
|
ocr_result = gr.Textbox(label="ข้อความที่ตรวจพบ") |
|
|
|
|
|
image_input.change(fn=ocr_on_cropped, inputs=image_input, outputs=ocr_result) |
|
|
|
|
|
demo.launch() |
|
|
|