File size: 7,058 Bytes
d4852d9 b8f4763 d4852d9 c746c39 b8f4763 c746c39 0d80f56 c746c39 b8f4763 51488f6 0d80f56 d4852d9 51488f6 d4852d9 51488f6 d4852d9 51488f6 d4852d9 51488f6 d4852d9 51488f6 d4852d9 51488f6 d4852d9 51488f6 d4852d9 51488f6 a4da241 d4852d9 51488f6 b8f4763 c746c39 d4852d9 51488f6 d4852d9 b8f4763 51488f6 b8f4763 51488f6 b8f4763 51488f6 b8f4763 51488f6 b8f4763 51488f6 b8f4763 d4852d9 51488f6 d4852d9 51488f6 d4852d9 75a5562 d4852d9 b8f4763 d4852d9 75a5562 d4852d9 b8f4763 d4852d9 a4da241 d4852d9 a4da241 d4852d9 0d80f56 a4da241 d4852d9 51488f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import argparse
import os
import tempfile
import numpy as np
import pandas as pd
import dgl
import torch
import wandb
from tqdm.auto import tqdm
from exp.utils import normalize_embeddings
from exp.prepare_recsys import prepare_recsys
from exp.evaluate import evaluate_recsys
from exp.gnn.model import GNNModel
from exp.gnn.loss import nt_xent_loss
from exp.gnn.utils import (
prepare_graphs, LRSchedule, fix_random,
sample_item_batch, inference_model)
def prepare_gnn_embeddings(config):
### Fix random seed
fix_random(config["seed"])
### Prepare graph
bipartite_graph, _ = prepare_graphs(config["items_path"], config["train_ratings_path"])
bipartite_graph = bipartite_graph.to(config["device"])
### Init wandb
if config["use_wandb"]:
wandb.init(project="graph-rec-gnn", name=config["wandb_name"], config=config)
### Prepare model
text_embeddings = torch.tensor(np.load(config["text_embeddings_path"])).to(config["device"])
model = GNNModel(
bipartite_graph=bipartite_graph,
text_embeddings=text_embeddings,
num_layers=config["num_layers"],
hidden_dim=config["hidden_dim"],
aggregator_type=config["aggregator_type"],
skip_connection=config["skip_connection"],
bidirectional=config["bidirectional"],
num_traversals=config["num_traversals"],
termination_prob=config["termination_prob"],
num_random_walks=config["num_random_walks"],
num_neighbor=config["num_neighbor"]
)
model = model.to(config["device"])
### Prepare dataloader
all_users = torch.arange(bipartite_graph.num_nodes("User")).to(config["device"])
all_users = all_users[bipartite_graph.in_degrees(all_users, etype="ItemUser") > 1] # We need to sample 2 items per user
dataloader = torch.utils.data.DataLoader(
all_users, batch_size=config["batch_size"], shuffle=True, drop_last=True)
### Prepare optimizer & LR scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=config["lr"])
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda _: 1.0)
### Train loop
for epoch in range(config["num_epochs"]):
### Train
model.train()
for user_batch in tqdm(dataloader):
item_batch = sample_item_batch(user_batch, bipartite_graph) # (2, |user_batch|)
item_batch = item_batch.reshape(-1) # (2 * |user_batch|)
features = model(item_batch) # (2 * |user_batch|, hidden_dim)
sim = features @ features.T # (2 * |user_batch|, 2 * |user_batch|)
loss = nt_xent_loss(sim, config["temperature"])
if config["use_wandb"]:
wandb.log({"loss": loss.item()})
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
### Validation
if (config["validate_every_n_epoch"] is not None) and (((epoch + 1) % config["validate_every_n_epoch"]) == 0):
item_embeddings = inference_model(
model, bipartite_graph, config["batch_size"], config["hidden_dim"], config["device"])
with tempfile.TemporaryDirectory() as tmp_dir_name:
tmp_embeddings_path = os.path.join(tmp_dir_name, "embeddings.npy")
np.save(tmp_embeddings_path, item_embeddings)
prepare_recsys(config["items_path"], tmp_embeddings_path, tmp_dir_name)
metrics = evaluate_recsys(
config["val_ratings_path"],
os.path.join(tmp_dir_name, "index.faiss"),
os.path.join(tmp_dir_name, "items.db"))
print(f"Epoch {epoch + 1} / {config['num_epochs']}. {metrics}")
if config["use_wandb"]:
wandb.log(metrics)
if config["use_wandb"]:
wandb.finish()
### Process full dataset
item_embeddings = inference_model(model, bipartite_graph, config["batch_size"], config["hidden_dim"], config["device"])
np.save(config["embeddings_savepath"], item_embeddings)
### Save final model
torch.save(model.to("cpu").state_dict(), config["model_savepath"])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Prepare GNN Embeddings")
# Paths
parser.add_argument("--items_path", type=str, required=True, help="Path to the items file")
parser.add_argument("--train_ratings_path", type=str, required=True, help="Path to the train ratings file")
parser.add_argument("--val_ratings_path", type=str, required=True, help="Path to the validation ratings file")
parser.add_argument("--text_embeddings_path", type=str, required=True, help="Path to the text embeddings file")
parser.add_argument("--embeddings_savepath", type=str, required=True, help="Path to the file where gnn embeddings will be saved")
parser.add_argument("--model_savepath", type=str, required=True, help="Path to save final model checkpoint.")
# Learning hyperparameters
parser.add_argument("--temperature", type=float, default=0.1, help="Temperature for NT-Xent loss")
parser.add_argument("--batch_size", type=int, default=512, help="Batch size for training")
parser.add_argument("--lr", type=float, default=0.01, help="Learning rate")
parser.add_argument("--num_epochs", type=int, default=4, help="Number of epochs")
# Model hyperparameters
parser.add_argument("--num_layers", type=int, default=2, help="Number of layers in the model")
parser.add_argument("--hidden_dim", type=int, default=64, help="Hidden dimension size")
parser.add_argument("--aggregator_type", type=str, default="mean", help="Type of aggregator in SAGEConv")
parser.add_argument("--skip_connection", action="store_true", dest="skip_connection", help="Disable skip connections")
parser.add_argument("--no_bidirectional", action="store_false", dest="bidirectional", help="Do not use reversed edges in convolution")
parser.add_argument("--num_traversals", type=int, default=4, help="Number of traversals in PinSAGE-like sampler")
parser.add_argument("--termination_prob", type=float, default=0.5, help="Termination probability in PinSAGE-like sampler")
parser.add_argument("--num_random_walks", type=int, default=200, help="Number of random walks in PinSAGE-like sampler")
parser.add_argument("--num_neighbor", type=int, default=10, help="Number of neighbors in PinSAGE-like sampler")
# Misc
parser.add_argument("--seed", type=int, default=42, help="Random seed.")
parser.add_argument("--validate_every_n_epoch", type=int, default=4, help="Perform RecSys validation every n train epochs.")
parser.add_argument("--device", type=str, default="cpu", help="Device to run the model on (cpu or cuda)")
parser.add_argument("--wandb_name", type=str, help="WandB run name")
parser.add_argument("--no_wandb", action="store_false", dest="use_wandb", help="Disable WandB logging")
args = parser.parse_args()
prepare_gnn_embeddings(vars(args)) |