File size: 7,058 Bytes
d4852d9
 
b8f4763
d4852d9
 
 
 
 
 
 
 
c746c39
b8f4763
 
c746c39
 
 
0d80f56
c746c39
b8f4763
 
51488f6
0d80f56
 
 
d4852d9
51488f6
 
d4852d9
 
51488f6
 
d4852d9
 
51488f6
d4852d9
 
 
51488f6
 
 
 
 
 
 
 
 
d4852d9
51488f6
d4852d9
 
51488f6
d4852d9
 
51488f6
d4852d9
 
51488f6
a4da241
d4852d9
 
51488f6
b8f4763
c746c39
d4852d9
 
 
 
 
51488f6
 
d4852d9
 
 
 
 
b8f4763
51488f6
b8f4763
51488f6
b8f4763
 
 
51488f6
b8f4763
51488f6
b8f4763
 
51488f6
 
b8f4763
d4852d9
51488f6
d4852d9
 
 
51488f6
 
d4852d9
75a5562
 
 
d4852d9
 
 
 
 
 
b8f4763
 
d4852d9
 
75a5562
d4852d9
 
 
 
 
 
 
 
 
b8f4763
d4852d9
a4da241
d4852d9
 
 
 
a4da241
d4852d9
 
0d80f56
a4da241
d4852d9
 
 
 
 
 
51488f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import os
import tempfile

import numpy as np
import pandas as pd
import dgl
import torch
import wandb
from tqdm.auto import tqdm

from exp.utils import normalize_embeddings
from exp.prepare_recsys import prepare_recsys
from exp.evaluate import evaluate_recsys
from exp.gnn.model import GNNModel
from exp.gnn.loss import nt_xent_loss
from exp.gnn.utils import (
    prepare_graphs, LRSchedule, fix_random,
    sample_item_batch, inference_model)


def prepare_gnn_embeddings(config):
    ### Fix random seed
    fix_random(config["seed"])

    ### Prepare graph
    bipartite_graph, _ = prepare_graphs(config["items_path"], config["train_ratings_path"])
    bipartite_graph = bipartite_graph.to(config["device"])

    ### Init wandb
    if config["use_wandb"]:
        wandb.init(project="graph-rec-gnn", name=config["wandb_name"], config=config)

    ### Prepare model
    text_embeddings = torch.tensor(np.load(config["text_embeddings_path"])).to(config["device"])
    model = GNNModel(
        bipartite_graph=bipartite_graph, 
        text_embeddings=text_embeddings, 
        num_layers=config["num_layers"],
        hidden_dim=config["hidden_dim"],
        aggregator_type=config["aggregator_type"],
        skip_connection=config["skip_connection"],
        bidirectional=config["bidirectional"],
        num_traversals=config["num_traversals"], 
        termination_prob=config["termination_prob"], 
        num_random_walks=config["num_random_walks"], 
        num_neighbor=config["num_neighbor"]
    )
    model = model.to(config["device"])

    ### Prepare dataloader
    all_users = torch.arange(bipartite_graph.num_nodes("User")).to(config["device"])
    all_users = all_users[bipartite_graph.in_degrees(all_users, etype="ItemUser") > 1] # We need to sample 2 items per user
    dataloader = torch.utils.data.DataLoader(
        all_users, batch_size=config["batch_size"], shuffle=True, drop_last=True)

    ### Prepare optimizer & LR scheduler
    optimizer = torch.optim.Adam(model.parameters(), lr=config["lr"])
    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda _: 1.0)
    
    ### Train loop
    for epoch in range(config["num_epochs"]):
        ### Train
        model.train()
        for user_batch in tqdm(dataloader):
            item_batch = sample_item_batch(user_batch, bipartite_graph)  # (2, |user_batch|)
            item_batch = item_batch.reshape(-1)  # (2 * |user_batch|)
            features = model(item_batch)  # (2 * |user_batch|, hidden_dim)
            sim = features @ features.T  # (2 * |user_batch|, 2 * |user_batch|)
            loss = nt_xent_loss(sim, config["temperature"])
            if config["use_wandb"]:
                wandb.log({"loss": loss.item()})
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
        ### Validation
        if (config["validate_every_n_epoch"] is not None) and (((epoch + 1) % config["validate_every_n_epoch"]) == 0):
            item_embeddings = inference_model(
                model, bipartite_graph, config["batch_size"], config["hidden_dim"], config["device"])
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                tmp_embeddings_path = os.path.join(tmp_dir_name, "embeddings.npy")
                np.save(tmp_embeddings_path, item_embeddings)
                prepare_recsys(config["items_path"], tmp_embeddings_path, tmp_dir_name)
                metrics = evaluate_recsys(
                    config["val_ratings_path"], 
                    os.path.join(tmp_dir_name, "index.faiss"),
                    os.path.join(tmp_dir_name, "items.db"))
                print(f"Epoch {epoch + 1} / {config['num_epochs']}. {metrics}")
                if config["use_wandb"]:
                    wandb.log(metrics)
         
    if config["use_wandb"]:
        wandb.finish()
    
    ### Process full dataset
    item_embeddings = inference_model(model, bipartite_graph, config["batch_size"], config["hidden_dim"], config["device"])
    np.save(config["embeddings_savepath"], item_embeddings)

    ### Save final model
    torch.save(model.to("cpu").state_dict(), config["model_savepath"])


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Prepare GNN Embeddings")

    # Paths
    parser.add_argument("--items_path", type=str, required=True, help="Path to the items file")
    parser.add_argument("--train_ratings_path", type=str, required=True, help="Path to the train ratings file")
    parser.add_argument("--val_ratings_path", type=str, required=True, help="Path to the validation ratings file")
    parser.add_argument("--text_embeddings_path", type=str, required=True, help="Path to the text embeddings file")
    parser.add_argument("--embeddings_savepath", type=str, required=True, help="Path to the file where gnn embeddings will be saved")
    parser.add_argument("--model_savepath", type=str, required=True, help="Path to save final model checkpoint.")

    # Learning hyperparameters
    parser.add_argument("--temperature", type=float, default=0.1, help="Temperature for NT-Xent loss")
    parser.add_argument("--batch_size", type=int, default=512, help="Batch size for training")
    parser.add_argument("--lr", type=float, default=0.01, help="Learning rate")
    parser.add_argument("--num_epochs", type=int, default=4, help="Number of epochs")

    # Model hyperparameters
    parser.add_argument("--num_layers", type=int, default=2, help="Number of layers in the model")
    parser.add_argument("--hidden_dim", type=int, default=64, help="Hidden dimension size")
    parser.add_argument("--aggregator_type", type=str, default="mean", help="Type of aggregator in SAGEConv")
    parser.add_argument("--skip_connection", action="store_true", dest="skip_connection", help="Disable skip connections")
    parser.add_argument("--no_bidirectional", action="store_false", dest="bidirectional", help="Do not use reversed edges in convolution")
    parser.add_argument("--num_traversals", type=int, default=4, help="Number of traversals in PinSAGE-like sampler")
    parser.add_argument("--termination_prob", type=float, default=0.5, help="Termination probability in PinSAGE-like sampler")
    parser.add_argument("--num_random_walks", type=int, default=200, help="Number of random walks in PinSAGE-like sampler")
    parser.add_argument("--num_neighbor", type=int, default=10, help="Number of neighbors in PinSAGE-like sampler")

    # Misc
    parser.add_argument("--seed", type=int, default=42, help="Random seed.")
    parser.add_argument("--validate_every_n_epoch", type=int, default=4, help="Perform RecSys validation every n train epochs.")
    parser.add_argument("--device", type=str, default="cpu", help="Device to run the model on (cpu or cuda)")
    parser.add_argument("--wandb_name", type=str, help="WandB run name")
    parser.add_argument("--no_wandb", action="store_false", dest="use_wandb", help="Disable WandB logging")

    args = parser.parse_args()

    prepare_gnn_embeddings(vars(args))