|
import getpass |
|
import os |
|
from dotenv import load_dotenv |
|
from typing import TypedDict, List, Dict, Any, Optional, Annotated |
|
|
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
|
|
from langgraph.graph import StateGraph, MessagesState, START, END |
|
from langgraph.graph.message import add_messages |
|
from langchain_core.messages import SystemMessage, HumanMessage, AnyMessage, AIMessage |
|
from langchain_core.messages.ai import subtract_usage |
|
|
|
from langchain.tools import Tool |
|
from langchain_core.tools import tool |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.retrievers import BM25Retriever |
|
|
|
from langgraph.prebuilt import ToolNode, tools_condition |
|
|
|
|
|
from prompts import system_prompt |
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
@tool |
|
def add(a:int, b:int) -> int: |
|
"""add two numbers. |
|
args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a + b |
|
|
|
|
|
@tool |
|
def subtract(a:int, b:int) -> int: |
|
"""subtract two numbers. |
|
args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a - b |
|
|
|
|
|
@tool |
|
def multiply(a:int, b:int) -> int: |
|
"""multiply two numbers. |
|
args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a * b |
|
|
|
|
|
@tool |
|
def divide(a:int, b:int) -> float: |
|
"""divide two numbers. |
|
args: |
|
a: first int |
|
b: second int |
|
""" |
|
try: |
|
|
|
result = a / b |
|
return result |
|
except ZeroDivisionError: |
|
|
|
raise ValueError("Cannot divide by zero.") |
|
|
|
|
|
@tool |
|
def modulus(a:int, b:int) -> int: |
|
"""modulus remainder of two numbers. |
|
args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a % b |
|
|
|
|
|
|
|
@tool |
|
def search_wiki(query: str) -> str: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
|
|
|
|
@tool |
|
def search_web(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
|
|
|
|
@tool |
|
def search_arxiv(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
tools = [ |
|
add, |
|
subtract, |
|
multiply, |
|
divide, |
|
modulus, |
|
search_wiki, |
|
search_web, |
|
search_arxiv |
|
] |
|
|
|
|
|
|
|
def build_graph(): |
|
|
|
llm = ChatGroq( |
|
model="meta-llama/llama-4-scout-17b-16e-instruct", |
|
temperature=0, |
|
) |
|
print(f"DEBUG: llm object = {llm}") |
|
|
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
print(f"DEBUG: llm_with_tools object = {llm_with_tools}") |
|
|
|
|
|
class AgentState(TypedDict): |
|
messages: Annotated[list[AnyMessage], add_messages] |
|
|
|
def assistant(state: AgentState): |
|
result = llm_with_tools.invoke(state["messages"]) |
|
print(f"DEBUG: LLM result = {result}") |
|
|
|
|
|
if isinstance(result, AIMessage) and result.usage_metadata is None: |
|
|
|
result.usage_metadata = {"input_tokens": 0, "output_tokens": 0, "total_tokens": 0} |
|
|
|
return { |
|
"messages": [result] |
|
} |
|
|
|
|
|
|
|
builder = StateGraph(AgentState) |
|
|
|
|
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
|
|
|
|
builder.add_edge(START, "assistant") |
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
{ |
|
|
|
"tools": "tools", |
|
|
|
END: END, |
|
} |
|
) |
|
builder.add_edge("tools", "assistant") |
|
|
|
return builder.compile() |
|
|
|
|
|
if __name__ == "__main__": |
|
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" |
|
graph = build_graph() |
|
messages = [HumanMessage(content=question)] |
|
messages = graph.invoke({"messages": messages}) |
|
for m in messages["messages"]: |
|
m.pretty_print() |
|
|