Spaces:
Sleeping
Sleeping
File size: 7,915 Bytes
1a44f6e 7d3718a 1a44f6e 7d3718a 1a44f6e 7d3718a 1a44f6e 7d3718a 1a44f6e 89ed0fe 1a44f6e c1dab72 7934067 c1dab72 1a44f6e c1dab72 1a44f6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import requests
import json
import os
import xml.etree.ElementTree as ET
import openai
import edge_tts
from pydub import AudioSegment
import re
import time
import asyncio
import streamlit as st
from datetime import datetime
from dotenv import load_dotenv
load_dotenv()
PODCAST_FILE = "merged_audio.mp3"
SHOW_NOTES_FILE = "show_notes.txt"
CONVERSATION_FILE = "conversation.json"
LAST_RUN_FILE = "last_run.txt"
feed_url = "http://papers.takara.ai/api/feed"
response = requests.get(feed_url)
tree = ET.ElementTree(ET.fromstring(response.text))
daily_feed = ""
items = []
for item in tree.iter("item"):
title = item.find("title").text
link = item.find("link").text
description = item.find("description").text
items.append({"title": title, "link": link, "description": description})
daily_feed += f"Title: {title.strip()}\nDescription: {description}\n\n"
client = openai.Client(
api_key=os.getenv("DEEPINFRA_API"),
base_url="https://api.deepinfra.com/v1/openai",
)
def build_prompt(text, items):
"""Generates a well-balanced podcast conversation covering all research papers, ensuring correct JSON format."""
paper_summaries = "\n".join(
[f"- {item['title']} ({item['link']}): {item['description']}" for item in items]
)
template = """
{
"conversation": [
{"speaker": "Brian", "text": ""},
{"speaker": "Jenny", "text": ""}
]
}
"""
return (
f"ποΈ Welcome to Daily Papers! Today, we're diving into the latest AI research in an engaging and "
f"informative discussion. The goal is to make it a **medium-length podcast** thatβs **engaging, natural, and insightful** while covering "
f"the key points of each paper.\n\n"
f"Here are today's research papers:\n{paper_summaries}\n\n"
f"Convert this into a **conversational podcast-style discussion** between two experts, Brian and Jenny. "
f"Ensure the conversation flows naturally, using a mix of **insightful analysis, casual phrasing, and occasional filler words** like 'uhm' and 'you know' "
f"to keep it realistic. The tone should be engaging yet professional, making it interesting for the audience.\n\n"
f"Each research paper should be **discussed meaningfully**, but avoid dragging the conversation too long. "
f"Focus on key insights and practical takeaways. Keep the pacing dynamic and interactive.\n\n"
f"Please return the conversation in **this exact JSON format**:\n{template}"
)
def extract_conversation(text, items, max_retries=3):
"""Extracts podcast conversation from OpenAI API with retries."""
for attempt in range(1, max_retries + 1):
try:
print(f"Attempt {attempt} to generate conversation...")
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": build_prompt(text, items)}],
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
temperature=0.7,
max_tokens=4096,
)
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, chat_completion.choices[0].message.content)
if json_match:
return json.loads(json_match.group())
raise ValueError("No valid JSON found in response")
except Exception as e:
print(f"Error: {e}")
if attempt < max_retries:
time.sleep(2)
else:
raise RuntimeError(f"Failed after {max_retries} attempts.")
def generate_show_notes(items):
"""Creates structured show notes summarizing research papers."""
notes = "**Show Notes**\n\nIn today's episode:\n\n"
for i, item in enumerate(items):
notes += f"{i+1}. **{item['title']}**\n - {item['description']}\n - [Read More]({item['link']})\n\n"
return notes
async def generate_audio_parallel(conversation):
"""Generates audio for the podcast in parallel."""
tasks = []
audio_files = []
for i, item in enumerate(conversation["conversation"]):
text = item["text"]
output_file = f"audio_{i}.mp3"
voice = "en-GB-RyanNeural" if item["speaker"] == "Brian" else "en-US-AvaMultilingualNeural"
tasks.append(edge_tts.Communicate(text=text, voice=voice).save(output_file))
audio_files.append(output_file)
await asyncio.gather(*tasks)
return audio_files
def merge_audio_files(audio_files, output_file="merged_audio.mp3"):
"""Merges multiple audio files into one MP3 file."""
combined = AudioSegment.empty()
for file in audio_files:
audio = AudioSegment.from_file(file)
combined += audio
combined.export(output_file, format="mp3")
print(f"Merged audio saved to {output_file}")
def save_to_file(content, filename):
"""Saves content to a file."""
with open(filename, "w") as file:
file.write(content)
def load_conversation():
"""Loads conversation from file if exists."""
if os.path.exists(CONVERSATION_FILE):
with open(CONVERSATION_FILE, "r", encoding="utf-8") as file:
return json.load(file)
return None
async def generate_podcast():
"""Generates podcast content (once per day or on force generate)."""
if os.path.exists(LAST_RUN_FILE):
with open(LAST_RUN_FILE, "r") as file:
last_run_date = file.read().strip()
if last_run_date == datetime.today().strftime("%Y-%m-%d"):
print("Podcast already generated today. Skipping...")
return
conversation = extract_conversation(daily_feed, items)
save_to_file(json.dumps(conversation, indent=2), CONVERSATION_FILE)
save_to_file(generate_show_notes(items), SHOW_NOTES_FILE)
print("Generating audio...")
audio_files = await generate_audio_parallel(conversation)
merge_audio_files(audio_files)
for file in audio_files:
os.remove(file)
with open(LAST_RUN_FILE, "w") as file:
file.write(datetime.today().strftime("%Y-%m-%d"))
print("Podcast and show notes generated successfully.")
asyncio.run(generate_podcast())
st.set_page_config(page_title="Daily Papers Podcast", page_icon="ποΈ", layout="wide")
st.title("ποΈ Today's Daily Papers Podcast")
st.subheader("Your Daily AI Research Insights - Engaging & Informative")
col1, col2 = st.columns([0.2, 0.8])
with col1:
st.image("Logo.png", width=120) # Ensure logo.png is in the working directory
with col2:
st.markdown(
"""
**Powered by:**
π [HF Daily Papers Feeds](https://github.com/404missinglink/HF-Daily-Papers-Feeds)
π [TLDR Takara AI](https://tldr.takara.ai/)
π [Takara AI Papers Feed](http://papers.takara.ai/api/feed)
"""
)
# Styling Divider
st.markdown("---")
conversation_data = load_conversation()
show_notes = "**No show notes available.**"
if os.path.exists(SHOW_NOTES_FILE):
with open(SHOW_NOTES_FILE, "r", encoding="utf-8") as f:
show_notes = f.read()
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("π§ Listen to the Podcast")
if os.path.exists(PODCAST_FILE):
audio_bytes = open(PODCAST_FILE, "rb").read()
st.audio(audio_bytes, format="audio/mp3")
else:
st.warning("No podcast available. Please generate an episode.")
st.subheader("π Show Notes")
st.markdown(show_notes)
with col2:
st.subheader("π¨οΈ Podcast Conversation")
if conversation_data:
for msg in conversation_data["conversation"]:
st.write(f"**{msg['speaker']}**: {msg['text']}")
else:
st.warning("No conversation data available.")
st.markdown("---")
if st.button("π Force Generate Podcast"):
asyncio.run(generate_podcast())
st.rerun()
st.markdown("π’ **Stay tuned for more AI research insights!**")
|