File size: 12,125 Bytes
2911686
c76d131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80d6c1a
 
 
 
 
c76d131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import json
import time

import gradio as gr
import numpy as np
import torch
# from gradio.themes.Soft import Soft
from PIL import Image
from qwen_vl_utils import process_vision_info
from transformers import (
    AutoProcessor,
    Gemma3ForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
)

from spaces import GPU
import supervision as sv

# --- Config ---
# IMPORTANT: Both models are gated. You must be logged in to your Hugging Face account
# and have been granted access to use them.
from huggingface_hub import login
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)



model_qwen_id = "Qwen/Qwen2.5-VL-3B-Instruct"
model_gemma_id = "google/gemma-3-4b-it"

# Load Qwen Model
model_qwen = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    model_qwen_id, torch_dtype="auto", device_map="auto"
)
min_pixels = 224 * 224
max_pixels = 1024 * 1024
processor_qwen = AutoProcessor.from_pretrained(
    model_qwen_id, min_pixels=min_pixels, max_pixels=max_pixels
)

# Load Gemma Model
model_gemma = Gemma3ForConditionalGeneration.from_pretrained(
    model_gemma_id,
    torch_dtype=torch.bfloat16,  # Recommended dtype for Gemma
    device_map="auto"
)
processor_gemma = AutoProcessor.from_pretrained(model_gemma_id)


def extract_model_short_name(model_id):
    return model_id.split("/")[-1].replace("-", " ").replace("_", " ")


model_qwen_name = extract_model_short_name(model_qwen_id)  # β†’ "Qwen2.5 VL 3B Instruct"
model_gemma_name = extract_model_short_name(model_gemma_id) # β†’ "gemma 3 4b it"


def create_annotated_image(image, json_data, height, width):
    try:
        # Standardize parsing for outputs wrapped in markdown
        if "```json" in json_data:
            parsed_json_data = json_data.split("```json")[1].split("```")[0]
        else:
            parsed_json_data = json_data
        bbox_data = json.loads(parsed_json_data)
    except Exception:
        # If parsing fails, return the original image
        return image

    # Ensure bbox_data is a list
    if not isinstance(bbox_data, list):
        bbox_data = [bbox_data]


    original_width, original_height = image.size
    x_scale = original_width / width
    y_scale = original_height / height

    points = []
    point_labels = []

    annotated_image = np.array(image.convert("RGB"))
    detections_exist = False

    # Check if there are bounding boxes in the data to create detections
    if any("box_2d" in item for item in bbox_data):
        detections_exist = True
        # Use Qwen parser as a generic VLM parser for bounding boxes
        detections = sv.Detections.from_vlm(vlm = sv.VLM.QWEN_2_5_VL,
                                            result=json_data,
                                            # resolution_wh is the size model "sees"
                                            resolution_wh=(width, height))
        bounding_box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
        label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)

        annotated_image = bounding_box_annotator.annotate(
            scene=annotated_image, detections=detections
        )
        annotated_image = label_annotator.annotate(
            scene=annotated_image, detections=detections
        )

    # Handle points separately
    for item in bbox_data:
        label = item.get("label", "")
        if "point_2d" in item:
            x, y = item["point_2d"]
            scaled_x = int(x * x_scale)
            scaled_y = int(y * y_scale)
            points.append([scaled_x, scaled_y])
            point_labels.append(label)

    if points:
        points_array = np.array(points).reshape(1, -1, 2)
        key_points = sv.KeyPoints(xy=points_array)
        vertex_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.BLUE)
        annotated_image = vertex_annotator.annotate(
            scene=annotated_image, key_points=key_points
        )

    return Image.fromarray(annotated_image)


@GPU
def detect_qwen(image, prompt):
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": prompt},
            ],
        }
    ]

    t0 = time.perf_counter()
    text = processor_qwen.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor_qwen(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(model_qwen.device)

    generated_ids = model_qwen.generate(**inputs, max_new_tokens=1024)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :]
        for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor_qwen.batch_decode(
        generated_ids_trimmed,
        do_sample=True,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )[0]
    elapsed_ms = (time.perf_counter() - t0) * 1_000

    # These dimensions are specific to how Qwen's processor handles images
    input_height = inputs["image_grid_thw"][0][1] * 14
    input_width = inputs["image_grid_thw"][0][2] * 14

    annotated_image = create_annotated_image(
        image, output_text, input_height, input_width
    )

    time_taken = f"**Inference time ({model_qwen_name}):** {elapsed_ms:.0f} ms"
    return annotated_image, output_text, time_taken


@GPU
def detect_gemma(image, prompt):
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": prompt},
            ],
        }
    ]

    t0 = time.perf_counter()
    inputs = processor_gemma.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt"
    ).to(model_gemma.device)

    input_len = inputs["input_ids"].shape[-1]

    with torch.inference_mode():
        generation = model_gemma.generate(**inputs, max_new_tokens=1024, do_sample=False)
    
    generation_trimmed = generation[0][input_len:]
    output_text = processor_gemma.decode(generation_trimmed, skip_special_tokens=True)
    elapsed_ms = (time.perf_counter() - t0) * 1_000

    # Gemma's vision encoder normalizes images to a fixed size (e.g., 896x896)
    input_height = 896
    input_width = 896

    annotated_image = create_annotated_image(
        image, output_text, input_height, input_width
    )

    time_taken = f"**Inference time ({model_gemma_name}):** {elapsed_ms:.0f} ms"
    return annotated_image, output_text, time_taken


def detect(image, prompt_model_1, prompt_model_2):
    STANDARD_SIZE = (1024, 1024)
    image.thumbnail(STANDARD_SIZE)

    annotated_image_model_1, output_text_model_1, timing_1 = detect_qwen(
        image, prompt_model_1
    )
    annotated_image_model_2, output_text_model_2, timing_2 = detect_gemma(
        image, prompt_model_2
    )

    return (
        annotated_image_model_1,
        output_text_model_1,
        timing_1,
        annotated_image_model_2,
        output_text_model_2,
        timing_2,
    )


css_hide_share = """
button#gradio-share-link-button-0 {
    display: none !important;
}
"""

# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css=css_hide_share) as demo:
    gr.Markdown("# Object Detection & Understanding: Qwen vs. Gemma")
    gr.Markdown(
        "### Compare object detection, visual grounding, and keypoint detection using natural language prompts with two leading VLMs."
    )
    gr.Markdown("""
    *Powered by [Qwen2.5-VL 3B](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) and [Gemma 3 4B IT](https://huggingface.co/google/gemma-3-4b-it). For best results, ask the model to return a JSON list in a markdown block. Inspired by the [HF Team's space](https://huggingface.co/spaces/sergiopaniego/vlm_object_understanding), selecting `detect` for categories with "Object Detection" `point` for the ones with "Keypoint Detection", and reasoning-based querying for all others.*
    """)

    with gr.Row():
        with gr.Column(scale=2):
            image_input = gr.Image(label="Upload an image", type="pil", height=400)
            prompt_input_model_1 = gr.Textbox(
                label=f"Enter your prompt for {model_qwen_name}",
                placeholder="e.g., Detect all red cars. Return a JSON list with 'box_2d' and 'label'.",
            )
            prompt_input_model_2 = gr.Textbox(
                label=f"Enter your prompt for {model_gemma_name}",
                placeholder="e.g., Detect all red cars. Return a JSON list with 'box_2d' and 'label'.",
            )
            generate_btn = gr.Button(value="Generate")

        with gr.Column(scale=1):
            output_image_model_1 = gr.Image(
                type="pil", label=f"Annotated image from {model_qwen_name}", height=400
            )
            output_textbox_model_1 = gr.Textbox(
                label=f"Model response from {model_qwen_name}", lines=10
            )
            output_time_model_1 = gr.Markdown()

        with gr.Column(scale=1):
            output_image_model_2 = gr.Image(
                type="pil",
                label=f"Annotated image from {model_gemma_name}",
                height=400,
            )
            output_textbox_model_2 = gr.Textbox(
                label=f"Model response from {model_gemma_name}", lines=10
            )
            output_time_model_2 = gr.Markdown()

    gr.Markdown("### Examples")
    
    prompt_obj_detect = "Detect all objects in this image. For each object, provide a 'box_2d' and a 'label'. Return the output as a JSON list inside a markdown block."
    prompt_candy_detect = "Detect all individual candies in this image. For each, provide a 'box_2d' and a 'label'. Return the output as a JSON list inside a markdown block."
    prompt_car_count = "Count the number of red cars in the image."
    prompt_candy_count = "Count the number of blue candies in the image."
    prompt_car_keypoint = "Identify the red cars in this image. For each, detect its key points and return their positions as 'point_2d' in a JSON list inside a markdown block."
    prompt_candy_keypoint = "Identify the blue candies in this image. For each, detect its key points and return their positions as 'point_2d' in a JSON list inside a markdown block."
    prompt_car_ground = "Detect the red car that is leading in this image. Return its location with 'box_2d' and 'label' in a JSON list inside a markdown block."
    prompt_candy_ground = "Detect the blue candy at the top of the group. Return its location with 'box_2d' and 'label' in a JSON list inside a markdown block."


    example_prompts = [
        ["examples/example_1.jpg", prompt_obj_detect, prompt_obj_detect],
        ["examples/example_2.JPG", prompt_candy_detect, prompt_candy_detect],
        ["examples/example_1.jpg", prompt_car_count, prompt_car_count],
        ["examples/example_2.JPG", prompt_candy_count, prompt_candy_count],
        ["examples/example_1.jpg", prompt_car_keypoint, prompt_car_keypoint],
        ["examples/example_2.JPG", prompt_candy_keypoint, prompt_candy_keypoint],
        ["examples/example_1.jpg", prompt_car_ground, prompt_car_ground],
        ["examples/example_2.JPG", prompt_candy_ground, prompt_candy_ground],
    ]

    gr.Examples(
        examples=example_prompts,
        inputs=[
            image_input,
            prompt_input_model_1,
            prompt_input_model_2,
        ],
        label="Click an example to populate the input",
    )

    generate_btn.click(
        fn=detect,
        inputs=[
            image_input,
            prompt_input_model_1,
            prompt_input_model_2,
        ],
        outputs=[
            output_image_model_1,
            output_textbox_model_1,
            output_time_model_1,
            output_image_model_2,
            output_textbox_model_2,
            output_time_model_2,
        ],
    )

if __name__ == "__main__":
    demo.launch()