File size: 8,510 Bytes
dc780c5
837713d
 
a07119c
 
837713d
 
 
b2134f5
837713d
b2134f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80cff80
c36a256
 
837713d
 
 
2b1d793
837713d
b2134f5
 
 
837713d
b4eef1e
b2134f5
 
b4eef1e
a1cb9c1
b2134f5
 
a1cb9c1
65ea63c
b2134f5
 
65ea63c
 
b2134f5
 
65ea63c
 
b2134f5
 
65ea63c
 
b2134f5
 
65ea63c
 
b2134f5
 
65ea63c
 
b2134f5
 
 
837713d
d842ce0
65ea63c
b2134f5
 
a07119c
44bb8b9
b2134f5
 
 
44bb8b9
b2134f5
 
 
44bb8b9
b2134f5
 
 
 
 
 
 
 
d842ce0
a07119c
 
b2134f5
 
 
a07119c
8d5a618
b2134f5
 
c36a256
837713d
 
276c4d0
b2134f5
 
 
 
 
 
 
 
276c4d0
b2134f5
 
837713d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d842ce0
837713d
dc780c5
 
 
d842ce0
dc780c5
b2134f5
dc780c5
 
 
 
 
 
d842ce0
85185da
b2134f5
d842ce0
dc780c5
b2134f5
 
 
d842ce0
837713d
 
b2134f5
 
d842ce0
b2134f5
 
d842ce0
 
837713d
b2134f5
d842ce0
 
b2134f5
d842ce0
 
 
 
 
b2134f5
 
 
d842ce0
837713d
50a7cb9
d842ce0
cf93985
 
d842ce0
cf93985
 
d842ce0
88dfd37
837713d
 
b2134f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import spaces
import gradio as gr
import torch
from string import punctuation
import re
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed

from num2words import num2words

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16

assert device == "cuda:0", "You really do not want to run this in a CPU"

# attn_implementation = "flash_attention_2"
# compilation_mode = "reduce-overhead"
# max_input_length_tokens = 64  # Note: Text tokens
max_output_length_tokens = 128 * 15  # Note: Audio tokens, ~128 per sec

repo_id = "parler-tts/parler-tts-mini-multilingual-v1.1"
model = ParlerTTSForConditionalGeneration.from_pretrained(
    repo_id,
    torch_dtype=torch_dtype,
    # attn_implementation=attn_implementation,
    attn_implementation="eager",
    device_map=device,
)
text_tokenizer = AutoTokenizer.from_pretrained(repo_id)
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)

SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42

default_text = "Entender e responder em audio é outro nível"
default_description = "Sophia's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."

examples = [
    [
        "Entender e responder em audio é outro nível",
        "a woman with a slightly low- pitched voice speaks slowly in a clear and close- sounding environment, but her delivery is quite monotone.",
    ],
    [
        "Entender e responder em audio é outro nível",
        "Sophia's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.",
    ],
    [
        "isso é uma solução que teria muito valor pra nós",
        "Sophia's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.",
    ],
    [
        "isso é uma solução que teria muito valor pra nós",
        "Nicholas's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.",
    ],
    [
        "As vezes tem uns sotaques meio bizarros, claro",
        "Nicholas's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.",
    ],
    [
        "As vezes tem uns sotaques meio bizarros, claro",
        "a man speaks slowly in a distant- sounding environment with a clean audio quality, delivering his message in a monotone voice at a moderate pitch. ",
    ],
    [
        "Mas em geral foi bem bom",
        "a man speaks slowly in a distant- sounding environment with a clean audio quality, delivering his message in a monotone voice at a moderate pitch. ",
    ],
    [
        "Mas em geral foi bem bom",
        "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up.",
    ],
]


NUMBER_PATTERN = re.compile(r"\b(?P<moeda>R[S\$]\s*)?(?P<numero>\d+([\,\._]\d+)?)\b")
ABBREVIATION_PATTERN = r"\b[A-Z][A-Z\.]+\b"


def preprocess(text: str):
    text = text.strip()
    text = text.replace("-", " ")

    def separate_abb(chunk):
        chunk = chunk.replace(".", "")
        return " ".join(chunk)

    for number in re.finditer(NUMBER_PATTERN, text):
        before = number.string[slice(*number.span())]
        after = num2words(number.group("numero").replace(',', '.'), lang="pt_BR", to="currency" if number.group("moeda") else "cardinal")
        text = text.replace(before, after, 1)

    for abv in re.findall(ABBREVIATION_PATTERN, text):
        if abv in text:
            text = text.replace(abv, separate_abb(abv), 1)

    if text[-1] not in punctuation:
        text = f"{text}."

    return text.strip()


@spaces.GPU
def gen_tts(text, description):
    inputs = description_tokenizer(description.strip(), return_tensors="pt").to(device)
    prompt = text_tokenizer(preprocess(text), return_tensors="pt").to(device)

    set_seed(SEED)
    generation = model.generate(
        input_ids=inputs.input_ids,
        prompt_input_ids=prompt.input_ids,
        attention_mask=inputs.attention_mask,
        prompt_attention_mask=prompt.attention_mask,
        do_sample=True,
        temperature=1.0,
        min_new_tokens=10,
        max_new_tokens=max_output_length_tokens,
    )
    audio_arr = generation.to(torch.float32).cpu().numpy().squeeze() # type: ignore
    return (SAMPLE_RATE, audio_arr)

css = """
        #share-btn-container {
            display: flex;
            padding-left: 0.5rem !important;
            padding-right: 0.5rem !important;
            background-color: #000000;
            justify-content: center;
            align-items: center;
            border-radius: 9999px !important; 
            width: 13rem;
            margin-top: 10px;
            margin-left: auto;
            flex: unset !important;
        }
        #share-btn {
            all: initial;
            color: #ffffff;
            font-weight: 600;
            cursor: pointer;
            font-family: 'IBM Plex Sans', sans-serif;
            margin-left: 0.5rem !important;
            padding-top: 0.25rem !important;
            padding-bottom: 0.25rem !important;
            right:0;
        }
        #share-btn * {
            all: unset !important;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
"""

with gr.Blocks(css=css) as block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;">
                <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                  Multilingual Parler-TTS 1.1 🗣️
                </h1>
              </div>
            </div>
        """
    )
    gr.HTML(
        """<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for
high-fidelity text-to-speech (TTS) models.</p> 
<p>This <a href="https://huggingface.co/parler-tts/parler-tts-mini-multilingual-v1.1">multilingual model</a> supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt.</p>
<p>By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>"""
    )
    gr.HTML(
        """<p>Baseado em <a href="https://huggingface.co/spaces/PHBJT/multi_parler_tts">PHBJT/multi_parler_tts</a>, atualizado para usar o modelo 1.1 e alterado para usar `num2words` para processar números em Português Brasileiro.</p>"""
    )
    
    with gr.Row():
        with gr.Column():
            gradio_input_text = gr.Textbox(
                label="Input Text", lines=2, value=default_text
            )
            gradio_description = gr.Textbox(
                label="Voice Description", lines=2, value=default_description
            )
            generate_button = gr.Button("Generate Audio", variant="primary")
        with gr.Column():
            audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", show_download_button=True)

    generate_button.click(
        fn=gen_tts, inputs=[gradio_input_text, gradio_description], outputs=[audio_out]
    )

    gr.Examples(
        examples=examples,
        fn=gen_tts,
        inputs=[gradio_input_text, gradio_description],
        outputs=[audio_out],
        cache_examples=True,
    )

    gr.HTML(
        """<p>Tips for ensuring good generation:
        <ul>
            <li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
            <li>Punctuation can be used to control the prosody of the generations</li>
            <li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
        </ul>
        </p>"""
    )

block.queue()
block.launch(share=True)