Spaces:
Sleeping
Sleeping
File size: 9,870 Bytes
bc1686b f842afa 5ffa82c bc1686b f842afa bc1686b f842afa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
---
title: dspy-example
app_file: gradio_interface.py
sdk: gradio
sdk_version: 5.38.2
---
# π¬ DSPy Director Bake-Off: A Beginner's Guide to DSPy Programming
Welcome to the **DSPy Director Bake-Off**! This project demonstrates core DSPy concepts through a fun, practical example: comparing how different movie directors would approach filming the same video idea.
## π― What You'll Learn
This tutorial teaches you the fundamental concepts of **DSPy** (Declarative Self-improving Python) through hands-on examples:
1. **Signatures** - Define input/output interfaces for LLM tasks
2. **Modules** - Combine multiple signatures into complex workflows
3. **Structured Output** - Use Pydantic models for reliable data extraction
4. **Async Processing** - Handle multiple LLM calls efficiently
5. **Chain of Thought** - Enable reasoning for complex decisions
## π Quick Start
### Prerequisites
- Python 3.8+
- An OpenRouter API key (free tier available)
### Installation
1. **Clone or download this project**
2. **Install dependencies:**
```bash
pip install -r requirements.txt
```
3. **Set up your API key:**
Create a `.env` file in the project directory:
```
OPENROUTER_API_KEY=your_api_key_here
```
4. **Run the demo:**
```bash
python director_bake_off.py
```
5. **Try the web interface:**
```bash
python gradio_interface.py
```
Then open http://localhost:7860 in your browser.
## π How It Works
The Director Bake-Off follows this workflow:
1. **User Input**: You provide a video idea and list of directors
2. **AI Suggestion**: DSPy suggests an additional director perfect for your idea
3. **Parallel Generation**: Each director's unique interpretation is generated simultaneously
4. **Intelligent Ranking**: An AI judge ranks all interpretations and explains the reasoning
5. **Beautiful Results**: View the winner and detailed breakdowns
## π Understanding the Code Structure
### ποΈ Project Architecture
```
director_bake_off.py # Main DSPy implementation (heavily commented)
gradio_interface.py # Beautiful web interface
requirements.txt # Python dependencies
.env # Your API keys (create this)
README.md # This guide
```
### π Code Walkthrough
The `director_bake_off.py` file is organized into clear sections:
#### **Section 1: LLM Setup**
```python
def setup_dspy_provider():
# Configure DSPy with your chosen LLM provider
# Supports OpenAI, Anthropic, OpenRouter, and more
```
#### **Section 2: Data Structures**
```python
class DirectorCut(BaseModel):
# Pydantic model defining the structure of cinematic prompts
# Ensures consistent, validated output from the LLM
```
#### **Section 3: DSPy Signatures**
```python
class FindDirector(dspy.Signature):
# Defines what inputs the LLM expects and what outputs it should produce
# Think of these as "contracts" between your code and the LLM
```
#### **Section 4: DSPy Module**
```python
class DirectorBakeOff(dspy.Module):
# Combines multiple signatures into a complete workflow
# Orchestrates the entire director comparison process
```
#### **Section 5: Main Functions**
```python
def run_bake_off(video_idea, directors):
# Easy-to-use interface that handles everything
# This is what external code calls to use our system
```
## π DSPy Concepts Explained
### What is DSPy?
**DSPy** is a framework for programming with Large Language Models (LLMs). Instead of writing prompts as strings, you define structured interfaces that make your LLM applications more reliable, maintainable, and powerful.
### π₯ Key Concepts
#### 1. **Signatures** - The Heart of DSPy
Signatures define the interface between your code and the LLM:
```python
class GenerateDirectorCut(dspy.Signature):
"""Transform a video idea into a cinematic prompt in a director's style."""
# What goes IN to the LLM
video_idea = dspy.InputField(desc="A simple video concept")
director = dspy.InputField(desc="The director's name")
# What comes OUT of the LLM
director_cut: DirectorCut = dspy.OutputField(desc="Structured cinematic prompt")
```
**Why this is powerful:**
- Clear contracts between code and LLM
- Automatic prompt generation
- Type safety and validation
- Reusable across different models
#### 2. **Structured Output with Pydantic**
Instead of parsing messy text, get structured data:
```python
class DirectorCut(BaseModel):
director: str
subject_description: str
action_description: str
setting_description: str
# ... more fields
def assemble_prompt(self) -> str:
# Combine all parts into a complete prompt
return ", ".join([self.subject_description, self.action_description, ...])
```
**Benefits:**
- Guaranteed data format
- Automatic validation
- Easy to work with in code
- No more regex parsing!
#### 3. **Modules** - Complex Workflows
Modules combine multiple signatures into sophisticated workflows:
```python
class DirectorBakeOff(dspy.Module):
def __init__(self):
self.findDirector = dspy.Predict(FindDirector)
self.genDirectorCut = dspy.Predict(GenerateDirectorCut)
self.directorJudge = dspy.ChainOfThought(DirectorJudge)
async def aforward(self, video_idea, directors):
# Orchestrate multiple LLM calls
# 1. Find additional director
# 2. Generate interpretations (in parallel!)
# 3. Judge and rank results
```
#### 4. **Different Predictor Types**
- **`dspy.Predict`**: Basic, fast predictions
- **`dspy.ChainOfThought`**: Enables step-by-step reasoning
- **`dspy.ReAct`**: Combines reasoning with actions
- **`dspy.ProgramOfThought`**: For mathematical/logical problems
#### 5. **Async Processing**
Handle multiple LLM calls efficiently:
```python
# Instead of calling one by one (slow):
for director in directors:
result = self.genDirectorCut(video_idea=idea, director=director)
# Call them all at once (fast!):
results = await asyncio.gather(
*[self.genDirectorCut.acall(video_idea=idea, director=d) for d in directors]
)
```
## π οΈ Building Your Own DSPy Applications
### Step 1: Define Your Data Structure
Start with a Pydantic model for your expected output:
```python
class MyOutput(BaseModel):
field1: str = Field(..., description="What this field should contain")
field2: int = Field(..., description="A number representing...")
# Add more fields as needed
```
### Step 2: Create Signatures
Define the interface for each LLM task:
```python
class MyTask(dspy.Signature):
"""Clear description of what this task should do."""
# Inputs
user_input = dspy.InputField(desc="What the user provides")
# Outputs
result: MyOutput = dspy.OutputField(desc="The structured result")
```
### Step 3: Build a Module
Combine signatures into a workflow:
```python
class MyModule(dspy.Module):
def __init__(self):
self.task = dspy.Predict(MyTask)
def forward(self, user_input):
return self.task(user_input=user_input)
```
### Step 4: Configure and Run
```python
# Configure DSPy with your LLM
dspy.configure(lm=dspy.LM("openrouter/model-name", api_key="your-key"))
# Use your module
module = MyModule()
result = module.forward("user input here")
print(result.result.field1) # Access structured output
```
## π¨ Customization Ideas
Try modifying the Director Bake-Off to explore DSPy further:
### π¬ **Different Creative Domains**
- **Music Producer Bake-Off**: Compare how different producers would approach a song
- **Chef Bake-Off**: See how famous chefs would prepare the same dish
- **Architect Bake-Off**: Compare building designs for the same space
### π§ **Technical Enhancements**
- **Add More Signatures**: Include budget estimation, casting suggestions
- **Different Predictors**: Try `dspy.ReAct` for more complex reasoning
- **Optimization**: Use DSPy's optimization features to improve performance
- **Multiple Models**: Compare results from different LLMs
### π― **New Applications**
- **Content Planning**: Generate social media strategies
- **Product Design**: Compare design approaches for products
- **Educational Content**: Create lesson plans in different teaching styles
## π Useful Resources
### DSPy Documentation
- [Official DSPy Documentation](https://dspy-docs.vercel.app/)
- [DSPy GitHub Repository](https://github.com/stanfordnlp/dspy)
- [DSPy Paper](https://arxiv.org/abs/2310.03714)
### LLM Providers
- [OpenRouter](https://openrouter.ai/) - Access to many models through one API
- [OpenAI](https://platform.openai.com/) - GPT models
- [Anthropic](https://www.anthropic.com/) - Claude models
### Learning More
- [Pydantic Documentation](https://docs.pydantic.dev/) - For data validation
- [Gradio Documentation](https://gradio.app/docs/) - For building web interfaces
- [Python Asyncio](https://docs.python.org/3/library/asyncio.html) - For async programming
## π€ Contributing
Found this helpful? Here are ways to contribute:
1. **Try it out** and share your results
2. **Create variations** for different domains
3. **Improve the documentation** with your learnings
4. **Share examples** of your own DSPy applications
## π License
This project is open source and available under the MIT License.
## π What's Next?
After mastering this example, you'll be ready to:
- Build production DSPy applications
- Optimize prompts automatically with DSPy's built-in tools
- Create complex multi-step reasoning systems
- Integrate DSPy into larger applications
**Happy coding with DSPy!** π
---
*This tutorial was created to make DSPy accessible to beginners. The heavily commented code and step-by-step explanations should help you understand not just how to use DSPy, but why it's such a powerful framework for LLM programming.*
|