File size: 8,955 Bytes
599c2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Active Context: Morris Bot Current State

## Current Work Focus

### Project Status: Phase 2 Enhanced Model Complete βœ…
The Morris Bot has successfully completed Phase 2 with an enhanced model that significantly improves Iain Morris's distinctive writing style. The enhanced model includes better system prompts, expanded training data, and improved style capture.

### Recent Major Achievements
- **Enhanced Model Training**: New `iain-morris-model-enhanced` with improved style capture
- **Comprehensive System Prompt**: Detailed style guide with doom-laden openings, cynical wit, and signature phrases
- **Expanded Training Data**: 126 examples (up from 118) including non-telecom topics
- **Updated Gradio App**: Now uses enhanced model with Apple Silicon MPS optimization
- **Improved Training Parameters**: 4 epochs, reduced learning rate (5e-5), better style learning
- **Multi-topic Capability**: Can generate Morris-style content beyond just telecom

### Current Capabilities
- βœ… **Content Generation**: Produces coherent, well-structured articles
- βœ… **Technical Accuracy**: Correct telecom industry knowledge and terminology
- βœ… **Fast Inference**: 2-5 seconds per article on Apple Silicon
- βœ… **Memory Efficiency**: Operates within 8GB RAM using LoRA
- βœ… **User Interface**: Simple web interface for topic input and generation

## Next Steps (Immediate Priorities)

### Priority 1: Enhanced Model Testing & Validation 🎯
**Current Status**: Enhanced model deployed and running in Gradio app
**Immediate Actions**:
1. **Comprehensive Testing**: Test enhanced model across diverse topics
   - Validate improved cynical tone and doom-laden openings
   - Test non-telecom topics (dating, work, social media, health)
   - Compare outputs with original model for style improvements

2. **Style Accuracy Assessment**: Evaluate if 90%+ style target achieved
   - Test signature phrases ("What could possibly go wrong?")
   - Validate dark analogies and visceral metaphors
   - Assess British cynicism and parenthetical snark

3. **Performance Validation**: Ensure enhanced model maintains performance
   - Verify 2-5 second generation times on Apple Silicon
   - Monitor memory usage and stability
   - Test various generation parameters

### Priority 2: User Experience Refinement
**Current State**: Enhanced Gradio app functional with improved model
**Planned Improvements**:
- Add non-telecom example topics to showcase versatility
- Improve UI styling and user feedback
- Add model comparison features (original vs enhanced)
- Better parameter controls for generation settings

### Priority 3: Documentation & Deployment
**Current State**: Enhanced model working, documentation needs updating
**Required Updates**:
- Update README with enhanced model capabilities
- Document new system prompt structure and style elements
- Create user guide for enhanced features
- Prepare deployment documentation

## Active Decisions and Considerations

### Model Architecture Decisions
- **Staying with Zephyr-7B-Beta**: Proven to work well, no need to change base model
- **LoRA Approach**: Confirmed as optimal for hardware constraints and training efficiency
- **Apple Silicon Focus**: Continue optimizing for M1/M2/M3 as primary target platform

### Training Strategy Decisions
- **Conservative Approach**: Prefer stable training over aggressive optimization
- **Quality over Quantity**: Focus on high-quality training examples rather than volume
- **Iterative Improvement**: Small, measurable improvements rather than major overhauls

### Development Workflow Decisions
- **Memory Bank Documentation**: Maintain comprehensive documentation for context continuity
- **Modular Architecture**: Keep components separate for easier testing and improvement
- **Validation-First**: Always validate changes with test scripts before deployment

## Important Patterns and Preferences

### Code Organization Patterns
- **Separation of Concerns**: Keep data processing, training, and inference separate
- **Configuration Centralization**: All training parameters in one place
- **Error Handling**: Comprehensive logging and graceful degradation
- **Hardware Abstraction**: Automatic device detection with fallbacks

### Development Preferences
- **Apple Silicon Optimization**: Primary development and testing platform
- **Memory Efficiency**: Always consider RAM usage in design decisions
- **User Experience**: Prioritize simplicity and responsiveness
- **Documentation**: Maintain clear, comprehensive documentation

### Quality Standards
- **Technical Accuracy**: Generated content must be factually correct
- **Style Consistency**: Aim for recognizable Iain Morris voice
- **Performance**: Sub-5-second generation times
- **Reliability**: Stable operation without crashes or memory issues

## Learnings and Project Insights

### What Works Well
1. **LoRA Fine-tuning**: Extremely effective for style transfer with limited resources
2. **Apple Silicon MPS**: Provides excellent performance for ML workloads
3. **Gradio Interface**: Rapid prototyping and user testing
4. **Modular Architecture**: Easy to test and improve individual components
5. **Conservative Training**: Stable convergence without overfitting

### Key Challenges Identified
1. **Style Authenticity**: Capturing distinctive voice requires more training data
2. **Dataset Size**: 18 examples insufficient for complex style learning
3. **Topic Diversity**: Need broader range of topics to capture full writing style
4. **Evaluation Metrics**: Difficult to quantify "style accuracy" objectively

### Technical Insights
1. **Memory Management**: LoRA enables training large models on consumer hardware
2. **Hardware Optimization**: MPS backend crucial for Apple Silicon performance
3. **Training Stability**: Conservative learning rates prevent instability
4. **Model Loading**: Lazy loading improves user experience

### Process Insights
1. **Documentation Value**: Memory bank crucial for maintaining context
2. **Iterative Development**: Small improvements compound effectively
3. **Validation Importance**: Test scripts catch issues early
4. **User Feedback**: Simple interface enables rapid testing and feedback

## Current Technical State

### Model Files Status
- **Base Model**: Zephyr-7B-Beta cached locally
- **Enhanced Model**: `models/iain-morris-model-enhanced/` - Primary model in use
- **Original Model**: `models/lora_adapters/` - Legacy model for comparison
- **Checkpoints**: Multiple training checkpoints (50, 100, 104) available
- **Tokenizer**: Properly configured and saved with enhanced model

### Data Pipeline Status
- **Enhanced Dataset**: 126 examples in `data/enhanced_train_dataset.json` (current)
- **Improved Dataset**: 119 examples in `data/improved_train_dataset.json` 
- **Original Dataset**: 18 examples in `data/train_dataset.json` (legacy)
- **Validation Data**: Enhanced validation set in `data/improved_val_dataset.json`
- **HuggingFace Datasets**: Cached for efficient retraining

### Application Status
- **Web Interface**: Enhanced Gradio app in `app.py` using improved model
- **Model Testing**: Multiple test scripts available (`test_enhanced_model.py`, `test_enhanced_style.py`)
- **Pipeline Scripts**: Full automation available via `run_pipeline.py`
- **Enhancement Tools**: `update_system_prompt.py`, `add_non_telecom_examples.py`
- **Logging**: Comprehensive logging to `morris_bot.log`
- **Current Status**: App running on localhost:7860 with enhanced model loaded

## Environment and Dependencies

### Current Environment
- **Python**: 3.8+ with virtual environment
- **Hardware**: Optimized for Apple Silicon M1/M2/M3
- **Dependencies**: All requirements installed and tested
- **Storage**: ~5GB used for models and data

### Known Issues
- **None Critical**: System is stable and functional
- **Style Limitation**: Primary area for improvement identified
- **Dataset Size**: Expansion needed for better results

## Next Session Priorities

When resuming work on this project:

1. **Read Memory Bank**: Review all memory bank files for full context
2. **Test Current State**: Run `python test_finetuned_model.py` to verify functionality
3. **Check Improvement Guide**: Review `improve_training_guide.md` for detailed next steps
4. **Focus on Style Enhancement**: Priority 1 is expanding training data for better style capture
5. **Validate Changes**: Always test improvements before considering them complete

## Success Metrics Tracking

### Current Performance
- **Training Loss**: 1.988 (excellent)
- **Generation Speed**: 2-5 seconds (target met)
- **Memory Usage**: ~8GB (within constraints)
- **Style Accuracy**: ~70% (needs improvement to 90%+)
- **Technical Accuracy**: High (telecom knowledge captured well)

### Improvement Targets
- **Style Accuracy**: 70% β†’ 90%+
- **Training Data**: 18 β†’ 100+ examples
- **Topic Coverage**: Telecom only β†’ Multi-topic
- **User Experience**: Basic β†’ Enhanced with better controls