Spaces:
Sleeping
Sleeping
File size: 8,594 Bytes
599c2c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# Technical Context: Morris Bot
## Technology Stack
### Core ML Technologies
- **Base Model**: HuggingFaceH4/zephyr-7b-beta (7 billion parameters)
- **Fine-tuning**: LoRA (Low-Rank Adaptation) via PEFT library
- **Framework**: PyTorch with Transformers library
- **Hardware Acceleration**: Apple Silicon MPS / NVIDIA CUDA
- **Precision**: float16 for memory efficiency
### Development Environment
- **Language**: Python 3.8+
- **Package Manager**: pip with requirements.txt
- **Virtual Environment**: venv (recommended)
- **IDE Support**: VSCode with Python extensions
- **Version Control**: Git (project structure suggests GitHub)
### Key Dependencies
```python
# Core ML Stack
torch>=2.0.0 # PyTorch framework
transformers>=4.35.0 # HuggingFace transformers
peft>=0.6.0 # Parameter-efficient fine-tuning
datasets>=2.14.0 # Dataset handling
accelerate>=0.24.0 # Training acceleration
# Web Interface
gradio>=4.0.0 # Web UI framework
# Data Processing
beautifulsoup4>=4.12.0 # Web scraping
requests>=2.31.0 # HTTP requests
pandas>=2.0.0 # Data manipulation
numpy>=1.24.0 # Numerical computing
# Utilities
tqdm>=4.65.0 # Progress bars
logging # Built-in logging
json # Built-in JSON handling
```
## Development Setup
### Hardware Requirements
- **Minimum**: 8GB RAM, 5GB free disk space
- **Recommended**: 16GB RAM, Apple Silicon M1/M2/M3 or NVIDIA GPU
- **Storage**: ~5GB for model files, ~1GB for training data
- **Network**: Stable internet for model downloads
### Installation Process
```bash
# Environment setup
python -m venv venv
source venv/bin/activate # macOS/Linux
# venv\Scripts\activate # Windows
# Dependencies
pip install -r requirements.txt
# Verify installation
python test_setup.py
```
### Hardware Detection Logic
```python
# Automatic device selection (from src/finetune.py)
import torch
if torch.backends.mps.is_available():
device = "mps" # Apple Silicon
dtype = torch.float16
quantization_config = None # Not supported on MPS
elif torch.cuda.is_available():
device = "cuda" # NVIDIA GPU
dtype = torch.float16
quantization_config = BitsAndBytesConfig(...)
else:
device = "cpu" # CPU fallback
dtype = torch.float32
```
## Technical Constraints
### Apple Silicon Specific
- **MPS Backend**: Metal Performance Shaders for acceleration
- **Quantization**: BitsAndBytesConfig not supported on MPS
- **DataLoader**: num_workers=0 required for stability
- **Memory**: Unified memory architecture, efficient but limited
### Memory Management
- **Model Size**: 7B parameters β 14GB in float32, 7GB in float16
- **LoRA Efficiency**: Only 42.5M parameters trainable (0.58% of total)
- **Gradient Accumulation**: Simulate larger batches without memory increase
- **Batch Size**: Limited to 1 on consumer hardware
### Training Constraints
- **Epochs**: Enhanced model uses 4 epochs for better style learning
- **Learning Rate**: Enhanced model uses 5e-5 for stable training
- **Sequence Length**: Max 2048 tokens per example
- **Dataset Size**: Enhanced model trained on 126 examples with topic diversity
## Tool Usage Patterns
### Model Training Workflow
```bash
# Full pipeline
python run_pipeline.py --all
# Individual steps
python src/scraper.py # Collect articles
python src/preprocess.py # Prepare training data
python src/finetune.py # Train model
python test_finetuned_model.py # Validate results
```
### Development Testing
```bash
# Enhanced model testing
python test_enhanced_model.py
# Enhanced style testing
python test_enhanced_style.py
# Original model test
python test_finetuned_model.py
# Setup verification
python test_setup.py
# Web interface
python app.py
```
### Enhanced Model Tools
```bash
# Update system prompts in training data
python update_system_prompt.py
# Add non-telecom examples to dataset
python add_non_telecom_examples.py
# Train enhanced model
python src/finetune.py # Uses enhanced dataset automatically
```
### Data Management
```bash
# Check training data
python -c "import json; print(len(json.load(open('data/train_dataset.json'))))"
# Validate training examples
python validate_training_examples.py
# Generate additional examples
python generate_training_examples.py
```
## File Structure and Conventions
### Project Organization
```
morris-bot/
βββ src/ # Core source code
β βββ finetune.py # Training logic
β βββ preprocess.py # Data preparation
β βββ scraper.py # Web scraping
β βββ utils.py # Helper functions
βββ data/ # Training and processed data
βββ models/ # Trained model storage
βββ memory-bank/ # Documentation and context
βββ logs/ # Training and application logs
```
### Naming Conventions
- **Files**: snake_case (e.g., `test_finetuned_model.py`)
- **Classes**: PascalCase (e.g., `MorrisBotTrainer`)
- **Functions**: snake_case (e.g., `load_model_and_tokenizer`)
- **Constants**: UPPER_CASE (e.g., `TRAINING_CONFIG`)
### Configuration Management
- **Training Config**: Centralized in `src/finetune.py`
- **Model Paths**: Relative paths from project root
- **Device Detection**: Automatic with fallbacks
- **Logging**: Structured logging to `morris_bot.log`
## Performance Characteristics
### Training Performance
- **Apple M3**: ~18 minutes for 2 epochs
- **Apple M1/M2**: ~25 minutes for 2 epochs
- **NVIDIA RTX 4090**: ~10 minutes for 2 epochs
- **CPU Only**: 4-6 hours for 2 epochs
### Inference Performance
- **Apple Silicon**: 2-3 seconds per article
- **NVIDIA GPU**: 1-2 seconds per article
- **CPU**: 15-30 seconds per article
### Memory Usage
- **Training**: ~8GB RAM (with LoRA)
- **Inference**: ~6GB RAM (model loaded)
- **Storage**: ~5GB for complete setup
## Integration Patterns
### Web Interface Integration
- **Framework**: Gradio for rapid prototyping
- **Model Loading**: Lazy loading on first generation request
- **State Management**: Stateless interface, model cached in memory
- **Error Handling**: Graceful degradation with user feedback
### Data Pipeline Integration
- **Input**: Raw HTML from Light Reading articles
- **Processing**: BeautifulSoup β JSON β HuggingFace Dataset
- **Output**: Instruction-formatted training examples
- **Validation**: Quality checks at each stage
### Model Serving Integration
- **Loading**: Base model + LoRA adapters
- **Tokenization**: Automatic tokenizer selection
- **Generation**: Configurable sampling parameters
- **Post-processing**: Text cleaning and formatting
## Development Tools and Debugging
### Logging Configuration
```python
# Structured logging setup
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('morris_bot.log'),
logging.StreamHandler()
]
)
```
### Debug Utilities
- **Model Testing**: `test_finetuned_model.py` for quick validation
- **Setup Verification**: `test_setup.py` for environment checks
- **Training Validation**: `validate_training_examples.py` for data quality
- **Progress Tracking**: tqdm progress bars during training
### Common Debug Commands
```bash
# Check model files
ls -la models/lora_adapters/
# Verify training data
python -c "import json; data=json.load(open('data/train_dataset.json')); print(f'Examples: {len(data)}')"
# Test hardware acceleration
python -c "import torch; print(f'MPS: {torch.backends.mps.is_available()}, CUDA: {torch.cuda.is_available()}')"
# Monitor training logs
tail -f morris_bot.log
```
## Deployment Considerations
### Local Deployment
- **Requirements**: Python environment with dependencies
- **Model Storage**: Local filesystem (~5GB)
- **Interface**: Gradio web server on localhost:7860
- **Scaling**: Single user, single model instance
### Production Considerations (Future)
- **Containerization**: Docker for consistent deployment
- **Model Serving**: Dedicated inference servers
- **Load Balancing**: Multiple model instances
- **Monitoring**: Performance and usage metrics
### Security Considerations
- **Model Access**: Local filesystem only
- **Web Interface**: Local network access by default
- **Data Privacy**: No user data persistence
- **Content Safety**: Basic output validation recommended
|