File size: 7,538 Bytes
599c2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""
Validate the quality of generated training examples
"""

import json
import re
from typing import List, Dict, Tuple

def analyze_training_examples(filepath: str) -> Dict:
    """Analyze the quality and characteristics of training examples"""
    
    with open(filepath, 'r', encoding='utf-8') as f:
        examples = json.load(f)
    
    analysis = {
        'total_examples': len(examples),
        'provocative_titles': 0,
        'cynical_phrases': 0,
        'technical_content': 0,
        'negative_analogies': 0,
        'avg_article_length': 0,
        'style_consistency': 0,
        'sample_titles': []
    }
    
    # Style indicators
    provocative_words = [
        'disaster', 'catastrophe', 'crash', 'burn', 'fail', 'collapse', 'meltdown',
        'nightmare', 'fiasco', 'debacle', 'train wreck', 'explosion', 'implosion'
    ]
    
    cynical_phrases = [
        'of course', 'naturally', 'predictably', 'unsurprisingly', 'evidently',
        'clearly', 'obviously', 'needless to say'
    ]
    
    negative_analogies = [
        'train wreck', 'collision', 'explosion', 'disaster', 'catastrophe',
        'meltdown', 'implosion', 'crash', 'carnival barker', 'unicorn'
    ]
    
    technical_terms = [
        '5G', 'RAN', 'AI', 'edge computing', 'automation', 'cloud', 'network',
        'operator', 'vendor', 'infrastructure', 'deployment', 'integration'
    ]
    
    total_length = 0
    style_score = 0
    
    for example in examples:
        if 'messages' in example and len(example['messages']) >= 3:
            content = example['messages'][2]['content']
            title_line = content.split('\n\n')[0]
            title = title_line[2:] if title_line.startswith('# ') else title_line
            
            # Collect sample titles
            if len(analysis['sample_titles']) < 10:
                analysis['sample_titles'].append(title)
            
            content_lower = content.lower()
            
            # Check for provocative titles
            if any(word in title.lower() for word in provocative_words):
                analysis['provocative_titles'] += 1
            
            # Check for cynical phrases
            if any(phrase in content_lower for phrase in cynical_phrases):
                analysis['cynical_phrases'] += 1
            
            # Check for technical content
            if any(term.lower() in content_lower for term in technical_terms):
                analysis['technical_content'] += 1
            
            # Check for negative analogies
            if any(analogy in content_lower for analogy in negative_analogies):
                analysis['negative_analogies'] += 1
            
            # Calculate article length
            article_length = len(content)
            total_length += article_length
            
            # Style consistency score (0-4 based on presence of key elements)
            style_elements = 0
            if any(word in title.lower() for word in provocative_words):
                style_elements += 1
            if any(phrase in content_lower for phrase in cynical_phrases):
                style_elements += 1
            if any(analogy in content_lower for analogy in negative_analogies):
                style_elements += 1
            if any(term.lower() in content_lower for term in technical_terms):
                style_elements += 1
            
            style_score += style_elements
    
    # Calculate averages and percentages
    if examples:
        analysis['avg_article_length'] = total_length // len(examples)
        analysis['style_consistency'] = (style_score / (len(examples) * 4)) * 100
        
        # Convert counts to percentages
        analysis['provocative_titles'] = (analysis['provocative_titles'] / len(examples)) * 100
        analysis['cynical_phrases'] = (analysis['cynical_phrases'] / len(examples)) * 100
        analysis['technical_content'] = (analysis['technical_content'] / len(examples)) * 100
        analysis['negative_analogies'] = (analysis['negative_analogies'] / len(examples)) * 100
    
    return analysis

def print_analysis_report(analysis: Dict):
    """Print a detailed analysis report"""
    print("=" * 60)
    print("TRAINING EXAMPLES QUALITY ANALYSIS")
    print("=" * 60)
    print(f"Total Examples: {analysis['total_examples']}")
    print(f"Average Article Length: {analysis['avg_article_length']:,} characters")
    print()
    
    print("STYLE ANALYSIS:")
    print(f"  Provocative Titles: {analysis['provocative_titles']:.1f}%")
    print(f"  Cynical Phrases: {analysis['cynical_phrases']:.1f}%")
    print(f"  Technical Content: {analysis['technical_content']:.1f}%")
    print(f"  Negative Analogies: {analysis['negative_analogies']:.1f}%")
    print(f"  Overall Style Consistency: {analysis['style_consistency']:.1f}%")
    print()
    
    print("SAMPLE TITLES:")
    for i, title in enumerate(analysis['sample_titles'], 1):
        print(f"  {i:2d}. {title}")
    print()
    
    # Quality assessment
    quality_score = (
        analysis['provocative_titles'] + 
        analysis['cynical_phrases'] + 
        analysis['technical_content'] + 
        analysis['negative_analogies']
    ) / 4
    
    print("QUALITY ASSESSMENT:")
    if quality_score >= 80:
        print("  ✅ EXCELLENT - High-quality examples with strong style consistency")
    elif quality_score >= 60:
        print("  ✅ GOOD - Solid examples with good style elements")
    elif quality_score >= 40:
        print("  ⚠️  FAIR - Acceptable but could use improvement")
    else:
        print("  ❌ POOR - Needs significant improvement")
    
    print(f"  Overall Quality Score: {quality_score:.1f}%")
    print()

def compare_datasets(original_file: str, new_file: str):
    """Compare original and new datasets"""
    print("DATASET COMPARISON:")
    print("-" * 40)
    
    original_analysis = analyze_training_examples(original_file)
    new_analysis = analyze_training_examples(new_file)
    
    print(f"Original Dataset: {original_analysis['total_examples']} examples")
    print(f"Expanded Dataset: {new_analysis['total_examples']} examples")
    print(f"New Examples Added: {new_analysis['total_examples'] - original_analysis['total_examples']}")
    print()
    
    print("STYLE CONSISTENCY COMPARISON:")
    print(f"  Original: {original_analysis['style_consistency']:.1f}%")
    print(f"  Expanded: {new_analysis['style_consistency']:.1f}%")
    
    if new_analysis['style_consistency'] >= original_analysis['style_consistency']:
        print("  ✅ Style consistency maintained or improved")
    else:
        print("  ⚠️  Style consistency decreased")
    print()

def main():
    """Main validation function"""
    print("Validating training examples quality...\n")
    
    # Analyze the new examples
    print("ANALYZING NEW EXAMPLES:")
    new_analysis = analyze_training_examples('data/additional_training_examples.json')
    print_analysis_report(new_analysis)
    
    # Analyze the expanded dataset
    print("ANALYZING EXPANDED DATASET:")
    expanded_analysis = analyze_training_examples('data/expanded_train_dataset.json')
    print_analysis_report(expanded_analysis)
    
    # Compare with original
    try:
        compare_datasets('data/train_dataset.json', 'data/expanded_train_dataset.json')
    except FileNotFoundError:
        print("Original dataset not found for comparison.")
    
    print("=" * 60)
    print("VALIDATION COMPLETE")
    print("=" * 60)

if __name__ == "__main__":
    main()