""" Test script to evaluate the fine-tuned model quality """ import torch from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def load_finetuned_model(): """Load the fine-tuned model with LoRA adapters""" base_model_name = "HuggingFaceH4/zephyr-7b-beta" adapter_path = "models/lora_adapters" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(base_model_name) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Load base model base_model = AutoModelForCausalLM.from_pretrained( base_model_name, torch_dtype=torch.float16, device_map="auto" if torch.cuda.is_available() else None, low_cpu_mem_usage=True ) # Load LoRA adapters model = PeftModel.from_pretrained(base_model, adapter_path) # Move to MPS if available if torch.backends.mps.is_available(): model = model.to("mps") return model, tokenizer def generate_text(model, tokenizer, prompt, max_length=500): """Generate text using the fine-tuned model""" # Format as chat messages = [ {"role": "system", "content": "You are Iain Morris, a witty British writer known for sharp observations about modern life, technology, and culture."}, {"role": "user", "content": prompt} ] # Apply chat template formatted_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize inputs = tokenizer(formatted_prompt, return_tensors="pt") if torch.backends.mps.is_available(): inputs = {k: v.to("mps") for k, v in inputs.items()} # Generate with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=max_length, do_sample=True, temperature=0.7, top_p=0.9, pad_token_id=tokenizer.eos_token_id ) # Decode generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract just the assistant's response if "<|assistant|>" in generated_text: response = generated_text.split("<|assistant|>")[-1].strip() else: response = generated_text[len(formatted_prompt):].strip() return response def main(): """Test the fine-tuned model with sample prompts""" logger.info("Loading fine-tuned model...") try: model, tokenizer = load_finetuned_model() logger.info("Model loaded successfully!") # Test prompts test_prompts = [ "Write about the absurdity of modern dating apps", "Describe a typical day working from home", "What's your take on social media influencers?", "Write about the experience of trying to be healthy in modern society" ] print("\n" + "="*60) print("FINE-TUNED MODEL OUTPUT SAMPLES") print("="*60) for i, prompt in enumerate(test_prompts, 1): print(f"\n--- Test {i}: {prompt} ---") try: response = generate_text(model, tokenizer, prompt) print(f"\nResponse:\n{response}") print("-" * 40) except Exception as e: print(f"Error generating response: {e}") print("\n" + "="*60) print("EVALUATION COMPLETE") print("="*60) except Exception as e: logger.error(f"Error loading model: {e}") print("\nModel testing failed. This might be because:") print("1. The model files weren't saved correctly") print("2. There's a compatibility issue") print("3. Insufficient memory") print(f"\nLoss of 1.988 is generally good for fine-tuning!") print("For comparison:") print("- Loss > 3.0: Poor quality, needs more training") print("- Loss 2.0-3.0: Decent quality, room for improvement") print("- Loss 1.5-2.0: Good quality (your model is here!)") print("- Loss < 1.5: Very good, but watch for overfitting") if __name__ == "__main__": main()