|
import gradio as gr |
|
from ultralytics import YOLO |
|
import spaces |
|
import torch |
|
import cv2 |
|
import numpy as np |
|
import os |
|
import requests |
|
|
|
|
|
ENTITIES_COLORS = { |
|
"Caption": (191, 100, 21), |
|
"Footnote": (2, 62, 115), |
|
"Formula": (140, 80, 58), |
|
"List-item": (168, 181, 69), |
|
"Page-footer": (2, 69, 84), |
|
"Page-header": (83, 115, 106), |
|
"Picture": (255, 72, 88), |
|
"Section-header": (0, 204, 192), |
|
"Table": (116, 127, 127), |
|
"Text": (0, 153, 221), |
|
"Title": (196, 51, 2) |
|
} |
|
BOX_PADDING = 2 |
|
|
|
|
|
model_paths = { |
|
"YOLOv8x Model": "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt", |
|
"YOLOv8m Model": "yolov8m-doclaynet.pt", |
|
"YOLOv8n Model": "yolov8n-doclaynet.pt", |
|
"YOLOv8s Model": "yolov8s-doclaynet.pt", |
|
"DLA Model": "models/dla-model.pt" |
|
} |
|
|
|
|
|
for model_name, model_path in model_paths.items(): |
|
if not os.path.exists(model_path): |
|
|
|
if model_name == "YOLOv8x Model": |
|
model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" |
|
response = requests.get(model_url) |
|
with open(model_path, "wb") as f: |
|
f.write(response.content) |
|
|
|
|
|
models = {name: YOLO(path) for name, path in model_paths.items()} |
|
|
|
|
|
class_names = list(ENTITIES_COLORS.keys()) |
|
|
|
@spaces.GPU(duration=60) |
|
def process_image(image, model_choice): |
|
try: |
|
if "YOLOv8" in model_choice: |
|
|
|
model = models[model_choice] |
|
results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True) |
|
result = results[0] |
|
|
|
|
|
annotated_image = result.plot() |
|
|
|
detected_areas_labels = "\n".join([ |
|
f"{class_names[int(box.cls.item())].upper()}: {float(box.conf):.2f}" for box in result.boxes |
|
]) |
|
|
|
return annotated_image, detected_areas_labels |
|
|
|
elif model_choice == "DLA Model": |
|
|
|
image_path = "input_image.jpg" |
|
cv2.imwrite(image_path, cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) |
|
image = cv2.imread(image_path) |
|
results = models[model_choice].predict(source=image, conf=0.2, iou=0.8) |
|
boxes = results[0].boxes |
|
|
|
if len(boxes) == 0: |
|
return image |
|
|
|
for box in boxes: |
|
detection_class_conf = round(box.conf.item(), 2) |
|
cls = class_names[int(box.cls)] |
|
start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1])) |
|
end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3])) |
|
|
|
line_thickness = round(0.002 * (image.shape[0] + image.shape[1]) / 2) + 1 |
|
image = cv2.rectangle(img=image, |
|
pt1=start_box, |
|
pt2=end_box, |
|
color=ENTITIES_COLORS[cls], |
|
thickness=line_thickness) |
|
|
|
text = cls + " " + str(detection_class_conf) |
|
font_thickness = max(line_thickness - 1, 1) |
|
(text_w, text_h), _ = cv2.getTextSize(text=text, fontFace=2, fontScale=line_thickness/3, thickness=font_thickness) |
|
image = cv2.rectangle(img=image, |
|
pt1=(start_box[0], start_box[1] - text_h - BOX_PADDING*2), |
|
pt2=(start_box[0] + text_w + BOX_PADDING * 2, start_box[1]), |
|
color=ENTITIES_COLORS[cls], |
|
thickness=-1) |
|
start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING) |
|
image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness) |
|
|
|
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), "Labels: " + ", ".join(class_names) |
|
|
|
else: |
|
return None, "Invalid model choice" |
|
|
|
except Exception as e: |
|
return None, f"Error processing image: {e}" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Document Layout Segmentation Comparison (ZeroGPU)") |
|
|
|
with gr.Row(): |
|
input_image = gr.Image(type="pil", label="Upload Image") |
|
output_image = gr.Image(type="pil", label="Annotated Image") |
|
|
|
model_choice = gr.Dropdown(list(model_paths.keys()), label="Select Model", value="YOLOv8x Model", scale=0.5) |
|
output_text = gr.Textbox(label="Detected Areas and Labels") |
|
|
|
btn = gr.Button("Run Document Segmentation") |
|
btn.click(fn=process_image, inputs=[input_image, model_choice], outputs=[output_image, output_text]) |
|
|
|
|
|
demo.queue(max_size=1).launch() |
|
|